Cloudinary Blog

Automatic image categorization and tagging with Imagga

Automatic Image Tagging and Categorization Using Imagga Api

If you have an application that allows users to upload their own photos, it can be very useful to be able to organize these photos according to their content. This will allow you to categorize the content for displaying to all your users and make your image library searchable. Furthermore, you can also learn more about your users according to the content they upload and find different trends of what people care about. Other added benefits can also include the ability to display matching content to your users according to their interests or even match them with other users that share similar interests.

Identifying images and their content is a process that would take huge amounts of time and resources if performed manually for many images. On the other hand, unlike text with words, images are data files with no meaning for simple software based filtering and require a deeper analysis of the actual meaning of the pixel colors in the image in order to automate the categorization and tagging process.

Imagga is a prominent company that develops and offers technologies, services, and online tools for visual image recognition, with technology that includes state-of-the-art machine learning approaches that allow it to be trained in the identification of various visual objects and concepts. In this post we would like to introduce you to a new add-on for Imagga's automatic image tagging capabilities, fully integrated into Cloudinary's image manipulation and management pipeline.

The Imagga Auto Tagging add-on

The Imagga add-on can automatically tell you what's in a photo by returning a list of detected tags and the confidence score of each tag.

The Imagga add-on is very simple to use: just set the categorization parameter of Cloudinary's image upload API to imagga_tagging while uploading an image and the response will include a list of suitable tags for the image.

For example, uploading the following picture of a koala to Cloudinary and requesting Imagga categorization:

Koala uploaded image for auto tagging

Ruby:
Cloudinary::Uploader.upload("koala.jpg",   
  :categorization => "imagga_tagging")
PHP:
\Cloudinary\Uploader::upload("koala.jpg",   
  array("categorization" => "imagga_tagging"));
Python:
cloudinary.uploader.upload("koala.jpg",  
  categorization = "imagga_tagging")
Node.js:
cloudinary.uploader.upload("koala.jpg",   
  function(result) { console.log(result); },   
  { categorization: "imagga_tagging" });
Java:
cloudinary.uploader().upload("koala.jpg", ObjectUtils.asMap(  
  "categorization", "imagga_tagging"));

The response will include the automatic categorization identified by the Imagga add-on. As can be seen in the response snippet below, various categories were automatically detected in the uploaded photo. The confidence score is a numerical value that represents the confidence level of the detected category, where 1.0 means 100% confidence. So Imagga is 100% sure that the picture contains a koala and only 8.5% sure that the picture contains a baboon.


"info"=>{
  "categorization"=>{
    "imagga_tagging"=>{
      "status"=>"complete", 
      "data"=>[
        {"tag"=>"koala", "confidence"=>1.0}, 
        {"tag"=>"mammal", "confidence"=>0.3151}, 
        {"tag"=>"monkey", "confidence"=>0.0882}
        {"tag"=>"baboon", "confidence"=>0.0853}

You can also get a list of tags from an already uploaded image by using the update method in Cloudinary's Admin API together with the image's public ID. For example, requesting Imagga categorization for the already uploaded image with a public ID of landscape:

Landscape photo for auto image tagging

Ruby:
Cloudinary::Api.update("landscape",   
  :categorization => "imagga_tagging")
PHP:
\Cloudinary\Api::update("landscape",   
  array("categorization" => "imagga_tagging"));
Python:
cloudinary.api.update("landscape",  
  categorization = "imagga_tagging")
Node.js:
cloudinary.api.update("landscape",   
  function(result) { console.log(result); },   
  { categorization: "imagga_tagging"});
Java:
cloudinary.api().update("landscape", ObjectUtils.asMap(  
  "categorization", "imagga_tagging"));

As with the upload API, the response includes the automatic categorization identified by Imagga shown in the response snippet below, where, for example, "landscape" is identified with 54% confidence, "grass" is identified with 44% confidence, along with a variety of other categories that may be relevant depending on your categorization scheme.


"info"=>{
  "categorization"=>{
    "imagga_tagging"=>{
      "status"=>"complete", 
      "data"=>[
        {"tag"=>"landscape", "confidence"=>0.5475}, 
        {"tag"=>"grass", "confidence"=>0.4414}, 
        {"tag"=>"field", "confidence"=>0.4121}, 
        {"tag"=>"sky", "confidence"=>0.394}, 
        {"tag"=>"land", "confidence"=>0.3514}, 
        {"tag"=>"rural", "confidence"=>0.3498}, 
        {"tag"=>"grassland", "confidence"=>0.3464}, 
        {"tag"=>"meadow", "confidence"=>0.3403}

Automatic tagging

If you want to organize, browse and manage your images based on the categories identified by Imagga, you can also automatically assign Cloudinary's resource tags to uploaded images.

Add the auto_tagging API parameter and set it to a minimum confidence level threshold, where all detected categories with a confidence level above this value will be automatically assigned that category as a resource tag.

For example, to automatically add tags to the landscape image with all detected categories that have a score higher than 0.4.

Ruby:
Cloudinary::Uploader.upload("landscape.jpg", 
  :categorization => "imagga_tagging", :auto_tagging => 0.4)
PHP:
\Cloudinary\Uploader::upload("landscape.jpg", 
  array("categorization" => "imagga_tagging", "auto_tagging" => 0.4));
Python:
cloudinary.uploader.upload("landscape.jpg",
  categorization = "imagga_tagging", auto_tagging = 0.4)
Node.js:
cloudinary.uploader.upload("landscape.jpg", 
  function(result) { console.log(result); }, 
  { categorization: "imagga_tagging", auto_tagging: 0.4 });
Java:
cloudinary.uploader().upload("landscape.jpg", ObjectUtils.asMap(
  "categorization", "imagga_tagging", "auto_tagging", "0.4"));

The response of the upload API call above returns the detected categories as well as the assigned tags. In this case, only the 'landscape', 'grass' and 'field' categories have a high enough score to be used as tags.

{ 
  ...    
  "tags" => [ "landscape", "grass", "field" ]   
  ...  
}

You can also use the update method to apply Imagga auto tagging to already uploaded images, based on their public IDs, and then automatically tag them according to the detected categories. See the Imagga add-on documentation for more information.

Categorization of images made easy

Categorizing photos can be a very useful and powerful tool that you can utilize to understand and organize the images that are uploaded by your users. Using the Imagga add-on as part of Cloudinary's service is simple and streamlined: you just need to add a parameter as part of the Cloudinary image upload and manipulation process.

Imagga add-on plans

The Imagga Auto Tagging add-on is available now and all Cloudinary plans can try it out with the add-on’s free tier. If you don't have a Cloudinary account yet, you can easily sign up for a free account.

Recent Blog Posts

CoreMedia Adds Cloudinary to its CoreMedia Studio Platform

Today we’re pleased to announce a new technology partnership with CoreMedia, a leading Content Experience Platform provider. CoreMedia users can now leverage Cloudinary’s web-based digital asset management (DAM) solution to organize, search, manage and optimize their media assets, including images and videos, and to orchestrate, preview and deliver digital experiences consistently and optimized across all channels and browsers. The official press release is available here.

Read more
Facial-Surveillance System for Restricted Zones

In Africa, where Internet access and bandwidth are limited, it’s not cost-effective or feasible to establish and maintain a connectivity for security and surveillance applications. That challenge makes it almost impossible to build a service that detects, with facial-recognition technology, if someone entering a building is authorized to do so. To meet the final-year research requirement for my undergraduate studies, I developed a facial-surveillance system. Armed with a background in computer vision, I decided to push the limits and see if I could build a surveillance system that does not require recording long video footage.

Read more
Complex Networks Case Study

Complex Networks has been using Cloudinary since 2014 to manage and optimize images across seven websites and two mobile apps, making editorial workflow more efficient, improving page performance and load time, and increasing user engagement. Cloudinary was instrumental in enabling Complex Networks to redesign its web properties. Without the flexibility that Cloudinary offers to both creative and development teams, it would not have been possible for Complex Networks to achieve such a fast time to market.

Read more
Automate Placeholder Generation and Accelerate Page Loads

If you run a Google search on LQIP you’ll see very few relevant articles, very little guidance, and definitely no Wikipedia articles. In this post, we’ll discuss some of the feedback on LQIP we have gathered from the community and suggest and open for conversation a few approaches based on the built-in capabilities of the Cloudinary service. Specifically, we’ll explain what LQIP are, where they are best used, and how you can leverage them to accelerate page loads and optimize user experience.

Read more
Best Practices for Optimizing Web Page Speed

If you're like most consumers today, you engage more with pictures or videos on a website than text. The stats don't lie - four times as many visitors would rather watch a video about a product than read about it, and sites with compelling images average twice as many views as text-heavy ones.

Read more
A day of fun with Girls Who Code and Cloudinary

During both my computer science studies and work in the tech field, there have not been a lot of women present. While our ranks have grown, women still make up only a small percentage. In many ways, I think the traditionally male-dominated world can be intimidating to women and girls who may be interested in pursuing these types of tech careers.

Read more