Cloudinary Blog

Addressing mobile challenges with the new Cloudinary SDK for Android

Address mobile challenges with the Cloudinary Android SDK

Developing applications for mobile consumption requires facing, and overcoming, some difficult challenges. Apps need to limit their RAM, CPU and battery usage while still performing the required tasks in a reasonable time frame. If too many background tasks are running, the mobile device can become sluggish, with the battery running out very quickly. Coordination with other apps is crucial to keep the device responsive and make the battery last longer.

Networks on mobile devices are also often unstable. Especially in some areas, disconnections are frequent and there are many switches between different network nodes, as well as slow network performance with a high percentage of packet loss. Apps need to be able to handle all the network issues, and if necessary, network activity needs to fail smoothly and resume when the network is available again, automatically if possible.

To support higher resolution mobile devices, the app backend needs to serve high-quality images and videos. Those resources take longer to download, and also consume more CPU and RAM to decode and then display on screen. On the other hand, for a low-resolution mobile device those are wasted resources, because you only need a low-quality resource. So you need to maintain a lot of different versions for each of your resources and then determine which one is most appropriate to serve to each mobile device.

With all that in mind, Cloudinary's latest version of the Android SDK lets you easily implement background upload functionality in your app to ensure the best user experience. If the user is doing something CPU, RAM or power intensive, the uploads can be paused so that the user experience doesn't suffer, and then continue when conditions are more favorable. And with Cloudinary's Dynamic URL feature, the delivered resource can be generated on the fly, eliminating the need to pre-generate all the various versions of your resources for different mobile devices.

The Cloudinary Android SDK v2.0

The Cloudinary SDK works on the principle that Android knows how to manage its own memory, CPU and power, and so relies on the operating system itself doing the prioritization of those limited hardware resources. All uploads are presented as requests to the operating system, which will schedule the uploads accordingly. The Cloudinary SDK hooks into Android's JobScheduler, which makes sure the mobile device works smoothly when running background uploads. If the mobile device is running an older version of Android that does not support the JobScheduler API, then the Cloudinary SDK transparently falls back to using the scheduling engine inside Google Play services.

All upload requests can be finely-tuned using the new policy mechanism, and the SDK can handle global callbacks, even when your app is down, or is running in the background.

Presenting the Cloudinary MediaManager

The Cloudinary Android SDK v2.0 provides you with the MediaManager class, with methods for configuring and handling all your media-related operations. Use the upload method to build your request, which is then dispatched to a background queue via the MediaManager's dispatch method.

Copy to clipboard
MediaManager.get().upload(imageFile).dispatch();

The MediaManager's option method lets you include any upload parameters for Cloudinary, for example, adding the tag user_uploaded:

Copy to clipboard
MediaManager.get().upload(imageFile)
   .option("tags", "user_uploaded")
   .dispatch();

While you are at it, you might want to specify some upload conditions in your request, such as how many times to retry after a recoverable error (e.g., network issues), to limit the upload to a wifi network, or only when the device is charging. The MediaManager's policy method lets you do just that, overriding the default values for that particular upload request:

Copy to clipboard
MediaManager.get().upload(filePath)
   .policy(new UploadPolicy.Builder()
      .maxRetries(7)
      .requiresCharging(true)
      .networkPolicy(UploadPolicy.NetworkType.UNMETERED)
      .build())
   .dispatch();

Callbacks

Since all uploads are ultimately run asynchronously by the system, the MediaManager's callback method provides an easy way to hook into the upload's progress and provide specific code to run at each stage of the upload.

Copy to clipboard
String requestId = MediaManager.get().upload(filePath)
   .callback(new UploadCallback() {
      @Override
      public void onProgress(String requestId, long bytes, long totalBytes) {
         Double progress = (double) bytes/totalBytes;
         // post progress to app UI (e.g. progress bar, notification)
      }
      @Override
      public void onSuccess(String requestId, Map resultData) {
      }
    ...
   })
   .dispatch();

This method of implementing callbacks won't suffice if your app is down or is running in the background. In this case, you would want to implement global callbacks for your app by registering a new service class that extends the provided ListenerService class. All upload request callbacks will be routed to your service, which implements the code to run at each stage of the upload.

Copy to clipboard
public class MyClass extends ListenerService {
   @Override
   public void onProgress(String requestId, long bytes, long totalBytes) {
      Double progress = (double) bytes/totalBytes;
      // post progress to app UI (e.g. progress bar, notification)
   }
   @Override
   public void onSuccess(String requestId, Map resultData) {
   }
   ...
}

Not only upload

Once your media assets have been uploaded to Cloudinary, you can take advantage of Cloudinary's Dynamic URL feature to deliver your images and videos to your users. Dynamic URLs include instructions telling Cloudinary how to transform and optimize the asset on-the-fly, and then deliver it through a fast CDN to the end user for optimal user experience. There is no need to pre-generate all the different versions you may need for the various devices running your app.

Besides taking care of all your resource uploads directly to your Cloudinary account, the MediaManager class provides the url method to generate a URL string for accessing resources uploaded to your Cloudinary account:

Copy to clipboard
MediaManager.get().url().generate("sample.jpg")
// returns: http://res.cloudinary.com/demo/image/upload/sample.jpg

You can also call the transformation method to include any transformation instructions in the generated URL:

Android:
Copy to clipboard
MediaManager.get().url().transformation(new Transformation()
  .gravity("face").radius(75).border("10px_solid_grey").crop("crop").chain()
  .overlay(new Layer().publicId("couple")).width(170).height(150).radius("max").gravity("faces").border("3px_solid_black").crop("thumb").chain()
  .flags("layer_apply").gravity("north_east")).generate("woman2.jpg");
image cropped with face detection and given rounded corners and a grey border, with an overlay of the image of `couple` resized to an oval thumbnail with face detection and a black border added to the northeast corner

Summary

The new version of the Cloudinary SDK for Android is a major release that now makes it simple to include upload functionality in your mobile app, and let your users upload their media directly to your Cloudinary account. The SDK takes advantage of Android's built-in functionality when executing the uploads, to make sure that your users enjoy an uninterrupted experience while using your app. Integrating with Cloudinary to upload, manage, and deliver all your app resources is now easier than ever. Make sure you check out the Android integration documentation, and if you don't already have a Cloudinary account, you can sign up for free.

Recent Blog Posts

Creating an API With Python Flask to Upload Files to Cloudinary

Code

Cloudinary offers SDKs for many programming languages and frameworks. Even though it also offers an Upload API endpoint for both back-end and front-end code, most developers find the SDKs very helpful. If you're working with a powerful back-end framework like Python Flask, you'll be happy to hear that a Python SDK is now available.
This tutorial walks you through the process of building an API to upload images to Cloudinary. You can also upload other file types, including video and even nonmedia files, with the API.

Read more
How to Use the Cloudinary Media Editor Widget

At Cloudinary, we manage the entire pipeline of media assets for thousands of customers of varying sizes from numerous verticals.

As part of our commitment to support the entire flow of media assets, we are now introducing an intuitive media editing widget: an out­-of­-the-­box, interactive UI providing your users with a set of common image editing actions for immediate use on your website or web app. The widget is interactive and simple, built on Cloudinary's transformation capabilities, and requiring only a few lines of code to integrate. Afterwards, you can seamlessly and effortlessly add content to your site or app with no need for in-house image editing capabilities.

Read more
Shoppable Video Is Becoming Popular in E-Commerce

As pandemic restrictions necessitated, many shopping trips in 2020 took place outside the traditional brick-and-mortar store, or at least void of the physical aisle-browsing experience. Same-day curbside pickup became a safe and convenient alternative, and e-commerce transactions skyrocketed as consumers shopped online. In fact, Digital Commerce 360 estimates that, compared to 2019, e-commerce transactions grew by more than 40% last year.

Read more
Enhance Your Travel Site With Cloudinary in Anticipation of a Return to New Normal

Read more
The Benefits of Headless DAMs

Headless is not a buzzword anymore. In fact, the concept of headless architecture is gaining momentum due to the flexibility it offers for composing new experiences and for tackling the undue complexity of an ever-evolving technology stack. That’s because while the evolution of the martech landscape has enabled disruptive, digital innovations, the approach of buying point solutions for solving specific challenges can expose companies to the complicated nature of new technologies, systems, and platforms.

Read more