Cloudinary Blog

Facial attribute detection with Microsoft's Face API

Facial Attribute Detection with Microsoft's Face API

Many of the photos displayed on the internet these days are of people. If your website or mobile application displays photos that include people, you will want to make sure that their faces are included in the delivered images when cropping and manipulating them to fit your graphic design and responsive layout. You may even want to further manipulate an image according to the faces present, for example, adding a harlequin mask overlay on all of their eyes, where each mask is adjusted to the correct size and orientation (although not a typical use case, it's a cool example of using advanced facial attribute detection):

Ruby:
cl_image_tag("cloudinary_team.jpg", :transformation=>[
  {:width=>700, :radius=>"max", :crop=>"scale"},
  {:flags=>"region_relative", :gravity=>"adv_eyes", :overlay=>"harlequinmask", :width=>1.7}
  ])
PHP:
cl_image_tag("cloudinary_team.jpg", array("transformation"=>array(
  array("width"=>700, "radius"=>"max", "crop"=>"scale"),
  array("flags"=>"region_relative", "gravity"=>"adv_eyes", "overlay"=>"harlequinmask", "width"=>1.7)
  )))
Python:
CloudinaryImage("cloudinary_team.jpg").image(transformation=[
  {'width': 700, 'radius': "max", 'crop': "scale"},
  {'flags': "region_relative", 'gravity': "adv_eyes", 'overlay': "harlequinmask", 'width': 1.7}
  ])
Node.js:
cloudinary.image("cloudinary_team.jpg", {transformation: [
  {width: 700, radius: "max", crop: "scale"},
  {flags: "region_relative", gravity: "adv_eyes", overlay: "harlequinmask", width: "1.7"}
  ]})
Java:
cloudinary.url().transformation(new Transformation()
  .width(700).radius("max").crop("scale").chain()
  .flags("region_relative").gravity("adv_eyes").overlay(new Layer().publicId("harlequinmask")).width(1.7)).imageTag("cloudinary_team.jpg");
JS:
cloudinary.imageTag('cloudinary_team.jpg', {transformation: [
  {width: 700, radius: "max", crop: "scale"},
  {flags: "region_relative", gravity: "adv_eyes", overlay: new cloudinary.Layer().publicId("harlequinmask"), width: "1.7"}
  ]}).toHtml();
jQuery:
$.cloudinary.image("cloudinary_team.jpg", {transformation: [
  {width: 700, radius: "max", crop: "scale"},
  {flags: "region_relative", gravity: "adv_eyes", overlay: new cloudinary.Layer().publicId("harlequinmask"), width: "1.7"}
  ]})
React:
<Image publicId="cloudinary_team.jpg" >
  <Transformation width="700" radius="max" crop="scale" />
  <Transformation flags="region_relative" gravity="adv_eyes" overlay="harlequinmask" width="1.7" />
</Image>
Angular:
<cl-image public-id="cloudinary_team.jpg" >
  <cl-transformation width="700" radius="max" crop="scale">
  </cl-transformation>
  <cl-transformation flags="region_relative" gravity="adv_eyes" overlay="harlequinmask" width="1.7">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation()
  .Width(700).Radius("max").Crop("scale").Chain()
  .Flags("region_relative").Gravity("adv_eyes").Overlay(new Layer().PublicId("harlequinmask")).Width(1.7)).BuildImageTag("cloudinary_team.jpg")
Android:
MediaManager.get().url().transformation(new Transformation()
  .width(700).radius("max").crop("scale").chain()
  .flags("region_relative").gravity("adv_eyes").overlay(new Layer().publicId("harlequinmask")).width(1.7)).generate("cloudinary_team.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation()
  .setWidth(700).setRadius("max").setCrop("scale").chain()
  .setFlags("region_relative").setGravity("adv_eyes").setOverlay("harlequinmask").setWidth(1.7)).generate("cloudinary_team.jpg")!, cloudinary: cloudinary)
Cloudinary team with masks

Face Detection is a great feature that enables the automatic modification of images according to the detected faces within an image, making it simple to intelligently crop, position, resize and transform your images appropriately.

At Cloudinary we strive to create an enriched environment that can solve our customers media asset related needs. By taking a holistic approach to image management, we create partnerships with leading companies developing image processing and media related technologies that can extend our internal features and capabilities and cater customers with more “complex” needs. Our add-ons feature services pre-integrated into Cloudinary that are tailored for developing, extending, and operating web and mobile apps.

We have recently partnered with Microsoft's Cognitive Services which provides a Face API for high precision face detection with state-of-the-art cloud-based algorithms. The Face API technology is fully integrated within our Advanced Facial Attributes Detection add-on that can do more than just detect the human faces in an image. The Advanced Facial Attribute Detection add-on can also extract meaningful advanced data about the face(s) in an image, including the exact location of facial features. This allows you even greater control over your image categorization, and to automatically use these details to smartly crop, position, rotate and overlay images based on the detected facial features.

Microsoft Cognitive Services logo

How to automatically detect facial attributes

Cloudinary supports uploading images using a cloud-based API. You can request further information while uploading the image by setting the detection parameter to adv_face when calling Cloudinary's upload API and Advanced Facial Attribute Detection is utilized to automatically extract detailed face attributes from the uploaded image. The detected faces are returned in the JSON response with rectangles (left, top, width and height) indicating the location of faces in the image in pixels, the exact position details of the eyes, mouth, eyebrows, nose and lips, as well as a series of face related attributes from each face such as pose, gender and age. See the Advanced Facial Attribute Detection documentation for more information. The code sample below uploads the lady image while requesting that the facial attributes are also returned in the JSON response:

Ruby:
Cloudinary::Uploader.upload("lady.jpg", 
              :detection: "adv_face")
PHP:
\Cloudinary\Uploader::upload("lady.jpg", 
              array(
               "detection": "adv_face"));
Python:
cloudinary.uploader.upload("lady.jpg", 
              detection = "adv_face")
Node.js:
cloudinary.uploader.upload("lady.jpg", 
              function(result) {console.log(result); }, { detection: "adv_face" });
Java:
cloudinary.uploader().upload("lady.jpg", 
              Cloudinary.asMap("detection", "adv_face"));

Ruby:
cl_image_tag("lady.jpg")
PHP:
cl_image_tag("lady.jpg")
Python:
CloudinaryImage("lady.jpg").image()
Node.js:
cloudinary.image("lady.jpg")
Java:
cloudinary.url().imageTag("lady.jpg");
JS:
cloudinary.imageTag('lady.jpg').toHtml();
jQuery:
$.cloudinary.image("lady.jpg")
React:
<Image publicId="lady.jpg" >

</Image>
Angular:
<cl-image public-id="lady.jpg" >

</cl-image>
.Net:
cloudinary.Api.UrlImgUp.BuildImageTag("lady.jpg")
Android:
MediaManager.get().url().generate("lady.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().generate("lady.jpg")!, cloudinary: cloudinary)
Original uploaded image

The example JSON snippet below contains the results of the upload response when applying advanced facial attribute detection on the uploaded image. The response includes very detailed information regarding the face that was automatically detected in the image above:

{
...
 "info": 
  {"detection": 
    {"adv_face": 
      {"status": "complete",
       "data": 
        [{"bounding_box": 
           {"top": 234.0, "left": 216.0, "width": 244.0, "height": 244.0},
          "attributes": 
           {"smile": 0.649,
            "head_pose": {"pitch": 0.0, "roll": -6.7, "yaw": 0.6},
            "gender": "female",
            "age": 30.3,
            "facial_hair": {"moustache": 0.0, "beard": 0.0, 
                            "sideburns": 0.0}},
          "facial_landmarks": 
           {"mouth": 
             {"left": {"x": 277.1, "y": 410.6},
              "right": {"x": 410.2, "y": 395.1},
              "under_lip": 
               {"bottom": {"x": 352.8, "y": 445.0},
                "top": {"x": 349.1, "y": 431.8}},
              "upper_lip": 
               {"bottom": {"x": 346.3, "y": 415.1},
                "top": {"x": 345.4, "y": 407.5}}},
            "eyebrow": 
             {"left_outer": {"x": 224.1, "y": 298.0},
              "left_inner": {"x": 306.6, "y": 283.4},
              "right_inner": {"x": 361.4, "y": 279.8},
              "right_outer": {"x": 428.8, "y": 272.2}},
            "eye": 
             {"left_outer": {"x": 258.5, "y": 314.1},
              "left_top": {"x": 277.0, "y": 306.2},
              "left_bottom": {"x": 277.1, "y": 315.6},
              "left_inner": {"x": 296.4, "y": 312.9},
              "right_inner": {"x": 373.4, "y": 305.2},
              "right_top": {"x": 388.0, "y": 294.5},
              "right_bottom": {"x": 389.0, "y": 306.0},
              "right_outer": {"x": 406.5, "y": 300.2},
              "left_pupil": {"x": 278.3, "y": 309.4},
              "right_pupil": {"x": 386.0, "y": 298.7}},
            "nose": 
             {"tip": {"x": 341.6, "y": 381.6},
              "root_left": {"x": 321.9, "y": 314.6},
              "root_right": {"x": 343.6, "y": 311.8},
              "left_alar_top": {"x": 312.7, "y": 359.7},
              "right_alar_top": {"x": 359.2, "y": 351.2},
              "left_alar_out_tip": {"x": 305.4, "y": 380.4},
              "right_alar_out_tip": {"x": 374.3, "y": 367.5}}}}]}}},
}

Dynamic image manipulation with facial attribute detection

Cloudinary supports on-the-fly image manipulation using simple parameters in HTTP delivery URLs. Based on the position of facial attributes detected by the Advanced Facial Attribute Detection add-on, Cloudinary can crop your images to focus on the detected facial features, while providing a large set of image transformation and cropping options when using a Cloudinary delivery URL. To focus an automatic crop on the detected faces, simply set the crop parameter to thumb, fill or crop and the gravity parameter to adv_faces (set gravity to adv_face for focusing on the single largest detected face in the image). The resulting images are dynamically generated on-the-fly and the result is delivered via a fast CDN.

For example, to deliver a 300x300 thumbnail of the lady image shown above:

Ruby:
cl_image_tag("lady.jpg", :gravity=>"adv_face", :height=>300, :width=>300, :crop=>"thumb")
PHP:
cl_image_tag("lady.jpg", array("gravity"=>"adv_face", "height"=>300, "width"=>300, "crop"=>"thumb"))
Python:
CloudinaryImage("lady.jpg").image(gravity="adv_face", height=300, width=300, crop="thumb")
Node.js:
cloudinary.image("lady.jpg", {gravity: "adv_face", height: 300, width: 300, crop: "thumb"})
Java:
cloudinary.url().transformation(new Transformation().gravity("adv_face").height(300).width(300).crop("thumb")).imageTag("lady.jpg");
JS:
cloudinary.imageTag('lady.jpg', {gravity: "adv_face", height: 300, width: 300, crop: "thumb"}).toHtml();
jQuery:
$.cloudinary.image("lady.jpg", {gravity: "adv_face", height: 300, width: 300, crop: "thumb"})
React:
<Image publicId="lady.jpg" >
  <Transformation gravity="adv_face" height="300" width="300" crop="thumb" />
</Image>
Angular:
<cl-image public-id="lady.jpg" >
  <cl-transformation gravity="adv_face" height="300" width="300" crop="thumb">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Gravity("adv_face").Height(300).Width(300).Crop("thumb")).BuildImageTag("lady.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().gravity("adv_face").height(300).width(300).crop("thumb")).generate("lady.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation().setGravity("adv_face").setHeight(300).setWidth(300).setCrop("thumb")).generate("lady.jpg")!, cloudinary: cloudinary)
150x150 thumbnail of lady.jpg

Cloudinary can also dynamically crop your images based on the position of detected eyes. Simply set the gravity parameter to adv_eyes (g_adv_eyes for URLs) to center the image on the detected eyes. The example below delivers a 200x60 thumbnail centered on the eyes:

Ruby:
cl_image_tag("lady.jpg", :gravity=>"adv_eyes", :width=>200, :height=>60, :crop=>"thumb")
PHP:
cl_image_tag("lady.jpg", array("gravity"=>"adv_eyes", "width"=>200, "height"=>60, "crop"=>"thumb"))
Python:
CloudinaryImage("lady.jpg").image(gravity="adv_eyes", width=200, height=60, crop="thumb")
Node.js:
cloudinary.image("lady.jpg", {gravity: "adv_eyes", width: 200, height: 60, crop: "thumb"})
Java:
cloudinary.url().transformation(new Transformation().gravity("adv_eyes").width(200).height(60).crop("thumb")).imageTag("lady.jpg");
JS:
cloudinary.imageTag('lady.jpg', {gravity: "adv_eyes", width: 200, height: 60, crop: "thumb"}).toHtml();
jQuery:
$.cloudinary.image("lady.jpg", {gravity: "adv_eyes", width: 200, height: 60, crop: "thumb"})
React:
<Image publicId="lady.jpg" >
  <Transformation gravity="adv_eyes" width="200" height="60" crop="thumb" />
</Image>
Angular:
<cl-image public-id="lady.jpg" >
  <cl-transformation gravity="adv_eyes" width="200" height="60" crop="thumb">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Gravity("adv_eyes").Width(200).Height(60).Crop("thumb")).BuildImageTag("lady.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().gravity("adv_eyes").width(200).height(60).crop("thumb")).generate("lady.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation().setGravity("adv_eyes").setWidth(200).setHeight(60).setCrop("thumb")).generate("lady.jpg")!, cloudinary: cloudinary)
200x60 thumbnail centered on eyes

Thanks to the detailed information on the position of facial attributes detected by the Advanced Facial Attribute Detection add-on, Cloudinary can add overlays while taking into account the pose of the face, and automatically scale and rotate the overlay accordingly.

Ruby:
cl_image_tag("HarlequinMask.jpg", :width=>150, :crop=>"scale")
PHP:
cl_image_tag("HarlequinMask.jpg", array("width"=>150, "crop"=>"scale"))
Python:
CloudinaryImage("HarlequinMask.jpg").image(width=150, crop="scale")
Node.js:
cloudinary.image("HarlequinMask.jpg", {width: 150, crop: "scale"})
Java:
cloudinary.url().transformation(new Transformation().width(150).crop("scale")).imageTag("HarlequinMask.jpg");
JS:
cloudinary.imageTag('HarlequinMask.jpg', {width: 150, crop: "scale"}).toHtml();
jQuery:
$.cloudinary.image("HarlequinMask.jpg", {width: 150, crop: "scale"})
React:
<Image publicId="HarlequinMask.jpg" >
  <Transformation width="150" crop="scale" />
</Image>
Angular:
<cl-image public-id="HarlequinMask.jpg" >
  <cl-transformation width="150" crop="scale">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Width(150).Crop("scale")).BuildImageTag("HarlequinMask.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().width(150).crop("scale")).generate("HarlequinMask.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation().setWidth(150).setCrop("scale")).generate("HarlequinMask.jpg")!, cloudinary: cloudinary)
Harlequin mask

For example, in order to automatically overlay the above image of a harlequin mask scaled to 170% relative to the detected eyes in the main image:

Ruby:
cl_image_tag("lady.jpg", :flags=>"region_relative", :gravity=>"adv_eyes", :overlay=>"HarlequinMask", :width=>1.7, :crop=>"scale")
PHP:
cl_image_tag("lady.jpg", array("flags"=>"region_relative", "gravity"=>"adv_eyes", "overlay"=>"HarlequinMask", "width"=>1.7, "crop"=>"scale"))
Python:
CloudinaryImage("lady.jpg").image(flags="region_relative", gravity="adv_eyes", overlay="HarlequinMask", width=1.7, crop="scale")
Node.js:
cloudinary.image("lady.jpg", {flags: "region_relative", gravity: "adv_eyes", overlay: "HarlequinMask", width: "1.7", crop: "scale"})
Java:
cloudinary.url().transformation(new Transformation().flags("region_relative").gravity("adv_eyes").overlay(new Layer().publicId("HarlequinMask")).width(1.7).crop("scale")).imageTag("lady.jpg");
JS:
cloudinary.imageTag('lady.jpg', {flags: "region_relative", gravity: "adv_eyes", overlay: new cloudinary.Layer().publicId("HarlequinMask"), width: "1.7", crop: "scale"}).toHtml();
jQuery:
$.cloudinary.image("lady.jpg", {flags: "region_relative", gravity: "adv_eyes", overlay: new cloudinary.Layer().publicId("HarlequinMask"), width: "1.7", crop: "scale"})
React:
<Image publicId="lady.jpg" >
  <Transformation flags="region_relative" gravity="adv_eyes" overlay="HarlequinMask" width="1.7" crop="scale" />
</Image>
Angular:
<cl-image public-id="lady.jpg" >
  <cl-transformation flags="region_relative" gravity="adv_eyes" overlay="HarlequinMask" width="1.7" crop="scale">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Flags("region_relative").Gravity("adv_eyes").Overlay(new Layer().PublicId("HarlequinMask")).Width(1.7).Crop("scale")).BuildImageTag("lady.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().flags("region_relative").gravity("adv_eyes").overlay(new Layer().publicId("HarlequinMask")).width(1.7).crop("scale")).generate("lady.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation().setFlags("region_relative").setGravity("adv_eyes").setOverlay("HarlequinMask").setWidth(1.7).setCrop("scale")).generate("lady.jpg")!, cloudinary: cloudinary)
Harlequin masked face

See the Advanced Facial Attribute Detection documentation for more information on the features available with the add-on and how to use them.

Summary

The Advanced Facial Attribute Detection add-on powered by Cloudinary and the Face API of Microsoft's Cognitive Services provides a high precision mechanism that can analyze images and create the best crop for most sites as well as automatically add the nice artistic effects of exact overlay placing. The integration within Cloudinary's pipeline is seamless and dynamic using simple manipulation URLs.

We are excited to enter into this partnership with Microsoft's Cognitive Services so give the add-on a try. The Advanced Facial Attribute Detection add-on is available to all our free and paid plans.

Recent Blog Posts

CoreMedia Adds Cloudinary to its CoreMedia Studio Platform

Today we’re pleased to announce a new technology partnership with CoreMedia, a leading Content Experience Platform provider. CoreMedia users can now leverage Cloudinary’s web-based digital asset management (DAM) solution to organize, search, manage and optimize their media assets, including images and videos, and to orchestrate, preview and deliver digital experiences consistently and optimized across all channels and browsers. The official press release is available here.

Read more
Facial-Surveillance System for Restricted Zones

In Africa, where Internet access and bandwidth are limited, it’s not cost-effective or feasible to establish and maintain a connectivity for security and surveillance applications. That challenge makes it almost impossible to build a service that detects, with facial-recognition technology, if someone entering a building is authorized to do so. To meet the final-year research requirement for my undergraduate studies, I developed a facial-surveillance system. Armed with a background in computer vision, I decided to push the limits and see if I could build a surveillance system that does not require recording long video footage.

Read more
Complex Networks Case Study

Complex Networks has been using Cloudinary since 2014 to manage and optimize images across seven websites and two mobile apps, making editorial workflow more efficient, improving page performance and load time, and increasing user engagement. Cloudinary was instrumental in enabling Complex Networks to redesign its web properties. Without the flexibility that Cloudinary offers to both creative and development teams, it would not have been possible for Complex Networks to achieve such a fast time to market.

Read more
Automate Placeholder Generation and Accelerate Page Loads

If you run a Google search on LQIP you’ll see very few relevant articles, very little guidance, and definitely no Wikipedia articles. In this post, we’ll discuss some of the feedback on LQIP we have gathered from the community and suggest and open for conversation a few approaches based on the built-in capabilities of the Cloudinary service. Specifically, we’ll explain what LQIP are, where they are best used, and how you can leverage them to accelerate page loads and optimize user experience.

Read more
Best Practices for Optimizing Web Page Speed

If you're like most consumers today, you engage more with pictures or videos on a website than text. The stats don't lie - four times as many visitors would rather watch a video about a product than read about it, and sites with compelling images average twice as many views as text-heavy ones.

Read more
A day of fun with Girls Who Code and Cloudinary

During both my computer science studies and work in the tech field, there have not been a lot of women present. While our ranks have grown, women still make up only a small percentage. In many ways, I think the traditionally male-dominated world can be intimidating to women and girls who may be interested in pursuing these types of tech careers.

Read more