Cloudinary Blog

Facial attribute detection with Microsoft's Face API

Powerful facial detection for image manipulation

Many of the photos displayed on the internet these days are of people. If your website or mobile application displays photos that include people, you will want to make sure that their faces are included in the delivered images when cropping and manipulating them to fit your graphic design and responsive layout. You may even want to further manipulate an image according to the faces present, for example, adding a harlequin mask overlay on all of their eyes, where each mask is adjusted to the correct size and orientation (although not a typical use case, it's a cool example of using advanced facial attribute detection):

Ruby:
cl_image_tag("cloudinary_team.jpg", :transformation=>[
  {:width=>700, :radius=>"max", :crop=>"scale"},
  {:flags=>"region_relative", :gravity=>"adv_eyes", :overlay=>"harlequinmask", :width=>1.7}
  ])
PHP:
cl_image_tag("cloudinary_team.jpg", array("transformation"=>array(
  array("width"=>700, "radius"=>"max", "crop"=>"scale"),
  array("flags"=>"region_relative", "gravity"=>"adv_eyes", "overlay"=>"harlequinmask", "width"=>1.7)
  )))
Python:
CloudinaryImage("cloudinary_team.jpg").image(transformation=[
  {"width": 700, "radius": "max", "crop": "scale"},
  {"flags": "region_relative", "gravity": "adv_eyes", "overlay": "harlequinmask", "width": 1.7}
  ])
Node.js:
cloudinary.image("cloudinary_team.jpg", {transformation: [
  {width: 700, radius: "max", crop: "scale"},
  {flags: "region_relative", gravity: "adv_eyes", overlay: "harlequinmask", width: "1.7"}
  ]})
Java:
cloudinary.url().transformation(new Transformation()
  .width(700).radius("max").crop("scale").chain()
  .flags("region_relative").gravity("adv_eyes").overlay("harlequinmask").width(1.7)).imageTag("cloudinary_team.jpg")
JS:
cl.imageTag('cloudinary_team.jpg', {transformation: [
  {width: 700, radius: "max", crop: "scale"},
  {flags: "region_relative", gravity: "adv_eyes", overlay: "harlequinmask", width: "1.7"}
  ]}).toHtml();
jQuery:
$.cloudinary.image("cloudinary_team.jpg", {transformation: [
  {width: 700, radius: "max", crop: "scale"},
  {flags: "region_relative", gravity: "adv_eyes", overlay: "harlequinmask", width: "1.7"}
  ]})
React:
<Image publicId="cloudinary_team.jpg" >
  <Transformation width="700" radius="max" crop="scale" />
  <Transformation flags="region_relative" gravity="adv_eyes" overlay="harlequinmask" width="1.7" />
</Image>
Angular:
<cl-image public-id="cloudinary_team.jpg" >
  <cl-transformation width="700" radius="max" crop="scale">
  </cl-transformation>
  <cl-transformation flags="region_relative" gravity="adv_eyes" overlay="harlequinmask" width="1.7">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation()
  .Width(700).Radius("max").Crop("scale").Chain()
  .Flags("region_relative").Gravity("adv_eyes").Overlay("harlequinmask").Width(1.7)).BuildImageTag("cloudinary_team.jpg")
Android:
MediaManager.get().url().transformation(new Transformation()
  .width(700).radius("max").crop("scale").chain()
  .flags("region_relative").gravity("adv_eyes").overlay("harlequinmask").width(1.7)).generate("cloudinary_team.jpg")
Cloudinary team with masks

Face Detection is a great feature that enables the automatic modification of images according to the detected faces within an image, making it simple to intelligently crop, position, resize and transform your images appropriately.

At Cloudinary we strive to create an enriched environment that can solve our customers media asset related needs. By taking a holistic approach to image management, we create partnerships with leading companies developing image processing and media related technologies that can extend our internal features and capabilities and cater customers with more “complex” needs. Our add-ons feature services pre-integrated into Cloudinary that are tailored for developing, extending, and operating web and mobile apps.

We have recently partnered with Microsoft's Cognitive Services which provides a Face API for high precision face detection with state-of-the-art cloud-based algorithms. The Face API technology is fully integrated within our Advanced Facial Attributes Detection add-on that can do more than just detect the human faces in an image. The Advanced Facial Attribute Detection add-on can also extract meaningful advanced data about the face(s) in an image, including the exact location of facial features. This allows you even greater control over your image categorization, and to automatically use these details to smartly crop, position, rotate and overlay images based on the detected facial features.

Microsoft Cognitive Services logo

How to automatically detect facial attributes

Cloudinary supports uploading images using a cloud-based API. You can request further information while uploading the image by setting the detection parameter to adv_face when calling Cloudinary's upload API and Advanced Facial Attribute Detection is utilized to automatically extract detailed face attributes from the uploaded image. The detected faces are returned in the JSON response with rectangles (left, top, width and height) indicating the location of faces in the image in pixels, the exact position details of the eyes, mouth, eyebrows, nose and lips, as well as a series of face related attributes from each face such as pose, gender and age. See the Advanced Facial Attribute Detection documentation for more information. The code sample below uploads the lady image while requesting that the facial attributes are also returned in the JSON response:

Ruby:
Cloudinary::Uploader.upload("lady.jpg", 
              :detection: "adv_face")
PHP:
\Cloudinary\Uploader::upload("lady.jpg", 
              array(
               "detection": "adv_face"));
Python:
cloudinary.uploader.upload("lady.jpg", 
              detection = "adv_face")
Node.js:
cloudinary.uploader.upload("lady.jpg", 
              function(result) {console.log(result); }, { detection: "adv_face" });
Java:
cloudinary.uploader().upload("lady.jpg", 
              Cloudinary.asMap("detection", "adv_face"));

Ruby:
cl_image_tag("lady.jpg")
PHP:
cl_image_tag("lady.jpg")
Python:
CloudinaryImage("lady.jpg").image()
Node.js:
cloudinary.image("lady.jpg")
Java:
cloudinary.url().imageTag("lady.jpg")
JS:
cl.imageTag('lady.jpg').toHtml();
jQuery:
$.cloudinary.image("lady.jpg")
React:
<Image publicId="lady.jpg" >

</Image>
Angular:
<cl-image public-id="lady.jpg" >

</cl-image>
.Net:
cloudinary.Api.UrlImgUp.BuildImageTag("lady.jpg")
Android:
MediaManager.get().url().generate("lady.jpg")
Original uploaded image

The example JSON snippet below contains the results of the upload response when applying advanced facial attribute detection on the uploaded image. The response includes very detailed information regarding the face that was automatically detected in the image above:

{
...
 "info": 
  {"detection": 
    {"adv_face": 
      {"status": "complete",
       "data": 
        [{"bounding_box": 
           {"top": 234.0, "left": 216.0, "width": 244.0, "height": 244.0},
          "attributes": 
           {"smile": 0.649,
            "head_pose": {"pitch": 0.0, "roll": -6.7, "yaw": 0.6},
            "gender": "female",
            "age": 30.3,
            "facial_hair": {"moustache": 0.0, "beard": 0.0, 
                            "sideburns": 0.0}},
          "facial_landmarks": 
           {"mouth": 
             {"left": {"x": 277.1, "y": 410.6},
              "right": {"x": 410.2, "y": 395.1},
              "under_lip": 
               {"bottom": {"x": 352.8, "y": 445.0},
                "top": {"x": 349.1, "y": 431.8}},
              "upper_lip": 
               {"bottom": {"x": 346.3, "y": 415.1},
                "top": {"x": 345.4, "y": 407.5}}},
            "eyebrow": 
             {"left_outer": {"x": 224.1, "y": 298.0},
              "left_inner": {"x": 306.6, "y": 283.4},
              "right_inner": {"x": 361.4, "y": 279.8},
              "right_outer": {"x": 428.8, "y": 272.2}},
            "eye": 
             {"left_outer": {"x": 258.5, "y": 314.1},
              "left_top": {"x": 277.0, "y": 306.2},
              "left_bottom": {"x": 277.1, "y": 315.6},
              "left_inner": {"x": 296.4, "y": 312.9},
              "right_inner": {"x": 373.4, "y": 305.2},
              "right_top": {"x": 388.0, "y": 294.5},
              "right_bottom": {"x": 389.0, "y": 306.0},
              "right_outer": {"x": 406.5, "y": 300.2},
              "left_pupil": {"x": 278.3, "y": 309.4},
              "right_pupil": {"x": 386.0, "y": 298.7}},
            "nose": 
             {"tip": {"x": 341.6, "y": 381.6},
              "root_left": {"x": 321.9, "y": 314.6},
              "root_right": {"x": 343.6, "y": 311.8},
              "left_alar_top": {"x": 312.7, "y": 359.7},
              "right_alar_top": {"x": 359.2, "y": 351.2},
              "left_alar_out_tip": {"x": 305.4, "y": 380.4},
              "right_alar_out_tip": {"x": 374.3, "y": 367.5}}}}]}}},
}

Dynamic image manipulation with facial attribute detection

Cloudinary supports on-the-fly image manipulation using simple parameters in HTTP delivery URLs. Based on the position of facial attributes detected by the Advanced Facial Attribute Detection add-on, Cloudinary can crop your images to focus on the detected facial features, while providing a large set of image transformation and cropping options when using a Cloudinary delivery URL. To focus an automatic crop on the detected faces, simply set the crop parameter to thumb, fill or crop and the gravity parameter to adv_faces (set gravity to adv_face for focusing on the single largest detected face in the image). The resulting images are dynamically generated on-the-fly and the result is delivered via a fast CDN.

For example, to deliver a 300x300 thumbnail of the lady image shown above:

Ruby:
cl_image_tag("lady.jpg", :gravity=>"adv_face", :height=>300, :width=>300, :crop=>"thumb")
PHP:
cl_image_tag("lady.jpg", array("gravity"=>"adv_face", "height"=>300, "width"=>300, "crop"=>"thumb"))
Python:
CloudinaryImage("lady.jpg").image(gravity="adv_face", height=300, width=300, crop="thumb")
Node.js:
cloudinary.image("lady.jpg", {gravity: "adv_face", height: 300, width: 300, crop: "thumb"})
Java:
cloudinary.url().transformation(new Transformation().gravity("adv_face").height(300).width(300).crop("thumb")).imageTag("lady.jpg")
JS:
cl.imageTag('lady.jpg', {gravity: "adv_face", height: 300, width: 300, crop: "thumb"}).toHtml();
jQuery:
$.cloudinary.image("lady.jpg", {gravity: "adv_face", height: 300, width: 300, crop: "thumb"})
React:
<Image publicId="lady.jpg" >
  <Transformation gravity="adv_face" height="300" width="300" crop="thumb" />
</Image>
Angular:
<cl-image public-id="lady.jpg" >
  <cl-transformation gravity="adv_face" height="300" width="300" crop="thumb">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Gravity("adv_face").Height(300).Width(300).Crop("thumb")).BuildImageTag("lady.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().gravity("adv_face").height(300).width(300).crop("thumb")).generate("lady.jpg")
150x150 thumbnail of lady.jpg

Cloudinary can also dynamically crop your images based on the position of detected eyes. Simply set the gravity parameter to adv_eyes (g_adv_eyes for URLs) to center the image on the detected eyes. The example below delivers a 200x60 thumbnail centered on the eyes:

Ruby:
cl_image_tag("lady.jpg", :gravity=>"adv_eyes", :width=>200, :height=>60, :crop=>"thumb")
PHP:
cl_image_tag("lady.jpg", array("gravity"=>"adv_eyes", "width"=>200, "height"=>60, "crop"=>"thumb"))
Python:
CloudinaryImage("lady.jpg").image(gravity="adv_eyes", width=200, height=60, crop="thumb")
Node.js:
cloudinary.image("lady.jpg", {gravity: "adv_eyes", width: 200, height: 60, crop: "thumb"})
Java:
cloudinary.url().transformation(new Transformation().gravity("adv_eyes").width(200).height(60).crop("thumb")).imageTag("lady.jpg")
JS:
cl.imageTag('lady.jpg', {gravity: "adv_eyes", width: 200, height: 60, crop: "thumb"}).toHtml();
jQuery:
$.cloudinary.image("lady.jpg", {gravity: "adv_eyes", width: 200, height: 60, crop: "thumb"})
React:
<Image publicId="lady.jpg" >
  <Transformation gravity="adv_eyes" width="200" height="60" crop="thumb" />
</Image>
Angular:
<cl-image public-id="lady.jpg" >
  <cl-transformation gravity="adv_eyes" width="200" height="60" crop="thumb">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Gravity("adv_eyes").Width(200).Height(60).Crop("thumb")).BuildImageTag("lady.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().gravity("adv_eyes").width(200).height(60).crop("thumb")).generate("lady.jpg")
200x60 thumbnail centered on eyes

Thanks to the detailed information on the position of facial attributes detected by the Advanced Facial Attribute Detection add-on, Cloudinary can add overlays while taking into account the pose of the face, and automatically scale and rotate the overlay accordingly.

Ruby:
cl_image_tag("HarlequinMask.jpg", :width=>150, :crop=>"scale")
PHP:
cl_image_tag("HarlequinMask.jpg", array("width"=>150, "crop"=>"scale"))
Python:
CloudinaryImage("HarlequinMask.jpg").image(width=150, crop="scale")
Node.js:
cloudinary.image("HarlequinMask.jpg", {width: 150, crop: "scale"})
Java:
cloudinary.url().transformation(new Transformation().width(150).crop("scale")).imageTag("HarlequinMask.jpg")
JS:
cl.imageTag('HarlequinMask.jpg', {width: 150, crop: "scale"}).toHtml();
jQuery:
$.cloudinary.image("HarlequinMask.jpg", {width: 150, crop: "scale"})
React:
<Image publicId="HarlequinMask.jpg" >
  <Transformation width="150" crop="scale" />
</Image>
Angular:
<cl-image public-id="HarlequinMask.jpg" >
  <cl-transformation width="150" crop="scale">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Width(150).Crop("scale")).BuildImageTag("HarlequinMask.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().width(150).crop("scale")).generate("HarlequinMask.jpg")
Harlequin mask

For example, in order to automatically overlay the above image of a harlequin mask scaled to 170% relative to the detected eyes in the main image:

Ruby:
cl_image_tag("lady.jpg", :flags=>"region_relative", :gravity=>"adv_eyes", :overlay=>"HarlequinMask", :width=>1.7, :crop=>"scale")
PHP:
cl_image_tag("lady.jpg", array("flags"=>"region_relative", "gravity"=>"adv_eyes", "overlay"=>"HarlequinMask", "width"=>1.7, "crop"=>"scale"))
Python:
CloudinaryImage("lady.jpg").image(flags="region_relative", gravity="adv_eyes", overlay="HarlequinMask", width=1.7, crop="scale")
Node.js:
cloudinary.image("lady.jpg", {flags: "region_relative", gravity: "adv_eyes", overlay: "HarlequinMask", width: "1.7", crop: "scale"})
Java:
cloudinary.url().transformation(new Transformation().flags("region_relative").gravity("adv_eyes").overlay("HarlequinMask").width(1.7).crop("scale")).imageTag("lady.jpg")
JS:
cl.imageTag('lady.jpg', {flags: "region_relative", gravity: "adv_eyes", overlay: "HarlequinMask", width: "1.7", crop: "scale"}).toHtml();
jQuery:
$.cloudinary.image("lady.jpg", {flags: "region_relative", gravity: "adv_eyes", overlay: "HarlequinMask", width: "1.7", crop: "scale"})
React:
<Image publicId="lady.jpg" >
  <Transformation flags="region_relative" gravity="adv_eyes" overlay="HarlequinMask" width="1.7" crop="scale" />
</Image>
Angular:
<cl-image public-id="lady.jpg" >
  <cl-transformation flags="region_relative" gravity="adv_eyes" overlay="HarlequinMask" width="1.7" crop="scale">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Flags("region_relative").Gravity("adv_eyes").Overlay("HarlequinMask").Width(1.7).Crop("scale")).BuildImageTag("lady.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().flags("region_relative").gravity("adv_eyes").overlay("HarlequinMask").width(1.7).crop("scale")).generate("lady.jpg")
Harlequin masked face

See the Advanced Facial Attribute Detection documentation for more information on the features available with the add-on and how to use them.

Summary

The Advanced Facial Attribute Detection add-on powered by Cloudinary and the Face API of Microsoft's Cognitive Services provides a high precision mechanism that can analyze images and create the best crop for most sites as well as automatically add the nice artistic effects of exact overlay placing. The integration within Cloudinary's pipeline is seamless and dynamic using simple manipulation URLs.

We are excited to enter into this partnership with Microsoft's Cognitive Services so give the add-on a try. The Advanced Facial Attribute Detection add-on is available to all our free and paid plans.

Recent Blog Posts

Analyze and auto tag images with Amazon Rekognition

Knowledge is power. And if you allow your users to upload images, you also probably want to better understand what their images contain. Whether a photo is of a building, people, animals, celebrities, or a product, image processing and analysis can assist in further comprehension. The benefits of this knowledge can go beyond "merely" categorizing your content and making your image library searchable: drawing insights from user generated content can be very useful! What better way to learn more about your users than to analyze the images they upload and find out what they care about and then have the ability to display relevant content to them according to their interests or even match them with other users that share similar interests.

Read more
Automatically moderate your user uploaded images

Allowing your users to upload their own images to your website can increase user engagement, retention and monetization. However, allowing your users to upload any image they want to, may lead to some of your users uploading inappropriate images to your application. These images may offend other users or even cause your site to violate standards or regulations.

Read more
Cloudinary Uses Scale API to Focus on Image Compression

Here at Cloudinary, we provide a cloud-based tool that enables our users to compress images and video for their websites and apps. Our goal is to preserve the visual integrity of the content, but deliver the smallest file size to any device or browser to ultimately optimize website performance and end user satisfaction.

Read more
CloudinaryAndroid SDK

Developing applications for mobile consumption requires facing, and overcoming, some difficult challenges. Apps need to limit their RAM, CPU and battery usage while still performing the required tasks in a reasonable time frame. If too many background tasks are running, the mobile device can become sluggish, with the battery running out very quickly. Coordination with other apps is crucial to keep the device responsive and make the battery last longer.

Read more
forLoop: Nigeria Event on Building for The Next Billion Users

TL;DR

Since Google shared their intent for the next billion internet users, some African developers thought this was pointing right at them and they needed to act fast. The mission to bring the next billion users from Africa to the internet kicked off a storm of enthusiasm. This community event turned into a success story and this is a summary of what happened.

Read more