Cloudinary Blog

How-to automatically identify similar images using pHash

Image fingerprinting Identify similar images using pHash

Photos today can be easily edited by means of resizing, cropping, adjusting the contrast, or changing an image’s format. As a result, new images are created that are similar to the original ones. Websites, web applications and mobile apps that allow user generated content uploads can benefit from identifying similar images.

Image de-duplication

If your site allows users to upload images, they can also upload various processed or manipulated versions of the same image. As described above, while the versions are not exactly identical, they are quite similar.

Obviously, it’s good practice to show several different images on a single page and avoid displaying similar images. For example, travel sites might want to show different images of a hotel room, but avoid having similar images of the room on the same page.

Webinar
How to Optimize for Page Load Speed

Additionally, if your web application deals with many uploaded images, you may want to be able to automatically recognize if newly uploaded images are similar to previously uploaded images. Recognizing similar images can prevent duplicate images from being used once they are uploaded, allowing you to better organize your site’s content. The better your web application is better at identifying similar images upon upload, the more duplicated images will no longer be a thing.

Duplicated images will no longer be a thing because similar images upon upload will be identified

Image similarity identification

Cloudinary uses perceptual hash (pHash), which acts as an image fingerprint. This mathematical algorithm analyzes an image's content and represents it using a 64-bit number fingerprint. Two images’ pHash values are "close" to one another if the images’ content features are similar. By comparing two image fingerprints, you can tell if they are similar.

You can request the pHash value of an image from Cloudinary for any uploaded image, either using Cloudinary's upload API, or for any previously uploaded image in your media library using our admin API. You can simply set the phash parameter to true, which produces the image's pHash value. This image similarity algorithm is incredibly powerful and easy to use. Check out the example below:

Using the following image for example:

Original koala photo

Below is a code sample in Ruby that shows how to upload this image with a request for the pHash value:

Copy to clipboard
Cloudinary::Uploader.upload("koala1.jpg", :public_id => "koala1", :phash => true)

The result below shows the returned response with the calculated pHash value:

Copy to clipboard
    {
     "public_id": "koala1",
     "version": 1424266415,
     "width": 887,
     "height": 562,
     "format": "jpg",
     "etag": "6f821ea4478af3e3a183721c0755cb1b",
    ...
     "phash": "ba19c8ab5fa05a59"
    }

The examples below demonstrate multiple similar images and their pHash values. Let's compare the pHash values and find the distance between each pair. If you XOR two of the pHash values and count the “1’s” in the result, you get a value between 0-64. The lower the value, the more similar the images are. If all 64 bits are the same, the photos are very similar.

The similarity score of the examples below expresses how each image is similar to the original image. The score is calculated as 1 - (phash_distance(phash1, phash2) / 64.0) in order to give a result between 0.5 and 1 (phash_distance can be computed using bit_count(phash1 ^ phash2) in MySQL for example).

Original koala thumbnail
887x562 JPEG, 180 KB
pHash: ba19c8ab5fa05a59

Grayscale koala
887x562 JPEG, 149 KB
Difference: grayscale.
pHash: ba19caab5f205a59
Similarity score: 0.96875

Cropped koala photo with increased saturation
797x562 JPEG, 179 KB
Difference: cropped, increased color saturation.
pHash: ba3dcfabbc004a49
Similarity score: 0.78125

Cropped koala photo with lower JPEG quality
887x509 JPEG, 30.6 KB
Difference: cropped, lower JPEG quality.
pHash: 1b39ccea7d304a59
Similarity score: 0.8125

Another koala photo
1000x667 JPEG, 608 KB
Difference: a different koala photo...
pHash: 3d419c23c42eb3db
Similarity score: 0.5625

Not a koala photo
1000x688 JPEG, 569 KB
Difference: not a koala...
pHash: f10773f1cd269246
Similarity score: 0.5

v

As you can see from the results above that the three images that appear to be similar to the original received a high score when they were compared. While other comparison results showed significantly less similarity.

By using Cloudinary to upload users’ photos to your site or application, you can request the pHash values of the uploaded images and store them on your servers. That allows you to identify which images are similar and decide what the next step should be. Building image matcher type of apps would be a lot easier. You may want to keep similar images, classify them in your database, filter them out, or interactively allow users to decide which images they want to keep.

Summary

This feature is available for any Cloudinary plan, including the free tier. As explained above, you can use Cloudinary’s API to get an image’s fingerprint and start checking for similarities. In addition, it is in our roadmap to further enhance our similar image search and de-duplication capabilities.

About Cloudinary

Cloudinary provides easy-to-use, cloud-based media management solutions for the world’s top brands. With offices in the US, UK and Israel, Cloudinary has quickly become the de facto solution used by developers and marketers at major companies around the world to streamline rich media management and deliver optimal end-user experiences.

For more information, visit www.cloudinary.com or follow us on Twitter.

Recent Blog Posts

A New, Simple Tool for Creating Text Overlays for Images

Many Cloudinary users desire a UI for tasks like creating text overlays for images, which they then embed on webpages or download for marketing campaigns. Generating such overlays with the Cloudinary Media Library UI involves a bit of a learning curve, especially if they require multiple fonts or text lines, which even experienced users might find challenging to implement.

Read more
Transitioning JPEG-Based to JPEG XL-Based Images for Web Platforms

When the JPEG codec was being developed in the late 1980s, no standardized, lossy image-compression formats existed. JPEG became ready at exactly the right time in 1992, when the World Wide Web and digital cameras were about to become a thing. The introduction of HTML’s <img> tag in 1995 ensured the recognition of JPEG as the web format—at least for photographs. During the 1990s, digital cameras replaced analog ones and, given the limited memory capacities of that era, JPEG became the standard format for photography, especially for consumer-grade cameras.

Read more

Amplify Your Jamstack With Video

By Alex Patterson
Amplify Your Jamstack With Cloudinary Video

As defined by Amazon Web Services (AWS), Amplify is a set of products and tools with which mobile and front-end web developers can build and deploy AWS-powered, secure, and scalable full-stack apps. Also, you can efficiently configure their back ends, connect them to your app with just a few lines of code, and deploy static web apps in only three steps. Historically, because of their performance issues, managing images and videos is a daunting challenge for developers. Even though you can easily load media to an S3 bucket with AWS Amplify, transforming, compressing, and responsively delivering them is labor intensive and time consuming.

Read more
Cloudinary Helps Move James Hardie’s Experience Online

While COVID has affected most businesses, it has been particularly hard on those that sell products for the physical ‘brick and mortar’ world. One company that literally fits that bill is our Australian customer James Hardie, the largest global manufacturer of fibre cement products used in both domestic and commercial construction. These are materials that its buyers ideally want to see up close, in detail. When customers have questions, they expect personal service.

Read more