Cloudinary Blog

How-to automatically identify similar images using pHash

Image fingerprinting Identify similar images using pHas

Photos today can be easily edited by means of resizing, cropping, adjusting the contrast, or changing an image’s format. As a result, new images are created that are similar to the original ones. Websites, web applications and mobile apps that allow user generated content uploads can benefit from identifying similar images.

Image de-duplication

If your site allows users to upload images, they can also upload various processed or manipulated versions of the same image. As described above, while the versions are not exactly identical, they are quite similar.

Obviously, it’s good practice to show several different images on a single page and avoid displaying similar images. For example, travel sites might want to show different images of a hotel room, but avoid having similar images of the room on the same page.

Additionally, if your web application deals with many uploaded images, you may want to be able to automatically recognize if newly uploaded images are similar to previously uploaded images. Recognizing similar images can prevent duplicate images from being used once they are uploaded, allowing you to better organize your site’s content.

Image similarity identification

Cloudinary uses perceptual hash (pHash), which acts as an image fingerprint. This mathematical algorithm analyzes an image's content and represents it using a 64-bit number fingerprint. Two images’ pHash values are "close" to one another if the images’ content features are similar. By comparing two image fingerprints, you can tell if they are similar.

You can request the pHash value of an image from Cloudinary for any uploaded image, either using Cloudinary's upload API, or for any previously uploaded image in your media library using our admin API. You can simply set the phash parameter to true, which produces the image's pHash value.

Using the following image for example:

Original koala photo

Below is a code sample in Ruby that shows how to upload this image with a request for the pHash value:

Cloudinary::Uploader.upload("koala1.jpg", :public_id => "koala1", :phash => true)

The result below shows the returned response with the calculated pHash value:

    {
     "public_id": "koala1",
     "version": 1424266415,
     "width": 887,
     "height": 562,
     "format": "jpg",
     "etag": "6f821ea4478af3e3a183721c0755cb1b",
    ...
     "phash": "ba19c8ab5fa05a59"
    }

The examples below demonstrate multiple similar images and their pHash values. Let's compare the pHash values and find the distance between each pair. If you XOR two of the pHash values and count the “1’s” in the result, you get a value between 0-64. The lower the value, the more similar the images are. If all 64 bits are the same, the photos are very similar.

The similarity score of the examples below expresses how each image is similar to the original image. The score is calculated as 1 - (phash_distance(phash1, phash2) / 64.0) in order to give a result between 0.5 and 1 (phash_distance can be computed using bit_count(phash1 ^ phash2) in MySQL for example).

Original koala thumbnail
887x562 JPEG, 180 KB
pHash: ba19c8ab5fa05a59

Grayscale koala
887x562 JPEG, 149 KB
Difference: grayscale.
pHash: ba19caab5f205a59
Similarity score: 0.96875

Cropped koala photo with increased saturation
797x562 JPEG, 179 KB
Difference: cropped, increased color saturation.
pHash: ba3dcfabbc004a49
Similarity score: 0.78125

Cropped koala photo with lower JPEG quality
887x509 JPEG, 30.6 KB
Difference: cropped, lower JPEG quality.
pHash: 1b39ccea7d304a59
Similarity score: 0.8125

Another koala photo
1000x667 JPEG, 608 KB
Difference: a different koala photo...
pHash: 3d419c23c42eb3db
Similarity score: 0.5625

Not a koala photo
1000x688 JPEG, 569 KB
Difference: not a koala...
pHash: f10773f1cd269246
Similarity score: 0.5

v

As you can see from the results above that the three images that appear to be similar to the original received a high score when they were compared. While other comparison results showed significantly less similarity.

By using Cloudinary to upload users’ photos to your site or application, you can request the pHash values of the uploaded images and store them on your servers. That allows you to identify which images are similar and decide what the next step should be. You may want to keep similar images, classify them in your database, filter them out, or interactively allow users to decide which images they want to keep.

Summary

This feature is available for any Cloudinary plan, including the free tier. As explained above, you can use Cloudinary’s API to get an image’s fingerprint and start checking for similarities. In addition, it is in our roadmap to further enhance our similar image search and de-duplication capabilities.

Recent Blog Posts

Google Analytics Video Tracking Made Simple

Most web analytics only look at page interactions. But what happens when the major content on your page is a video. You want to know when and how long your users are interacting with your media, when they paused to take a closer look at your media content and when they skipped some content because it wasn’t relevant to them. These - along with a lot of other reasons - are why you should not only analyze open/visits rates, but also drill down in the media content.

Read more
Give your mobile app a boost: pre-upload image processing

As a mobile developer, enabling users to upload images and share them with other users is a very common requirement. When developing those capabilities, we need to take into account that most users won't think twice about uploading the massive images that their high-resolution mobile cameras capture. Those huge files are not only overkill for on-screen display, but can also cause significant slow downs in upload and delivery times. And of course those same users wouldn't think twice about complaining or abandoning our app if their overall user experience wasn't smooth and fast.

Read more
Cloudinary Helps Hinge Keep Modern Romance Real

To create a profile, Hinge users initially had to connect their Facebook and/or Instagram accounts to the app, which would import images to the users’ Hinge profiles. Hinge stored those images with a URL that expired after two months, unless the user logged into the app regularly. This aspect of the app was frustrating for users because the photos would become inaccessible for others to view.

Read more
Building a Smart AI Image Search Tool Using React

In our first article, we built a part of the front-end of our image search tool with the focus mainly on the parent App.js stateful component.

In this article - part two of a series - we will continue developing a Smart Search App, in which users can search for content in an image, not just the description. The app is built with React for UI interaction, Cloudinary for image upload and management and Algolia for search.

Read more