Cloudinary Blog

Powerful image manipulation and categorization with facial attribute detection

Advanced Facial Attributes Detection for Image Manipulation

Update - December 2015: The add-on described in this post is no longer available since ReKognition terminated their services. However, all features described here are still available via a different and even better add-on: Advanced Facial Attributes Detection

Face Detection is a great feature that enables the automatic modification of images according to the detected faces within an image, making it simple to intelligently crop, position, resize and transform your images appropriately.

Facial Attribute Detection takes the process even further and extracts meaningful advanced data about the face(s) in the image, including the exact location of facial features. This allows you even greater control over your image categorization, and to automatically use these details to smartly crop, position, rotate and overlay images based on the detected facial features.

Facial Attribute Detection lets you know more than just the location of a person's facial features. How are they posed in 3 dimensions? Is the person wearing glasses? Do they have their eyes closed? Mouth open? Have a mustache or beard? What is the person's race, age and gender? What emotion are they displaying? Are they smiling? How beautiful are they? Retrieving this information makes it a simple matter to automatically categorize and tag your collection of images.

All of this is made possible with the ReKognition add-on, which has been directly integrated within Cloudinary’s infrastructure, further extending Cloudinary’s built-in face detection to a robust Facial Attribute Detection feature. By simply setting the detection parameter to rekognition_face when calling Cloudinary's upload API, ReKognition is utilized to automatically extract detailed face attributes from the uploaded image.

Ruby:
Cloudinary::Uploader.upload("woman.jpg", 
              :detection => "rekognition_face")
PHP:
\Cloudinary\Uploader::upload("woman.jpg", 
              array(
               "detection" => "rekognition_face"));
Python:
cloudinary.uploader.upload("woman.jpg", 
              detection = "rekognition_face")
Node.js:
cloudinary.uploader.upload("woman.jpg", 
              function(result) {console.log(result); }, { detection: "rekognition_face" });
Java:
cloudinary.uploader().upload("woman.jpg", 
              Cloudinary.asMap("detection", "rekognition_face"));

Original woman image

The example JSON snippet displayed from the example image above contains the result returned from the face ReKognition request, which includes very detailed information regarding the face that was automatically detected in the image.

{"rekognition_face": 
 "status": "complete",
  "data": [
    {
      "boundingbox": {
        "tl": {"x": 231.45, "y": 102.52},
        "size": {"width": 240.77, "height": 240.77 }},
      "confidence": 1,
      "eye_left": {"x":309.6, "y": 190.1},
      "eye_right": {"x": 407.9, "y": 213.6},
      "nose": {"x": 199.1, "y": 204.0},
      
      
      
      "smile": 0.96,
      "glasses": 0.01,
      "sunglasses": 0.04,
      "beard": 0,
      "mustache": 0,
      "eye_closed": 0,
      "mouth_open_wide": 0.73,
      "beauty": 0.63531,
      "sex": 1
    }
  ]
}

You can also use Cloudinary's Admin API to apply ReKognition face detection to already uploaded images (based on their public IDs), and the face attributes that were previously extracted are also available using the Admin API's show resource details method.

Face detection based cropping

Based on the position of facial attributes detected by the ReKognition add-on, Cloudinary can crop your images to focus on the detected facial features, while providing a large set of image transformation and cropping options when using a Cloudinary delivery URL or calling Cloudinary's image API.

To focus an automatic crop on the detected faces, simply set the crop parameter to thumb, fill or crop and the gravity parameter to rek_faces (set gravity to rek_face for focusing on the single largest detected face in the image). The resulting images are dynamically generated on-the-fly and the result is delivered via a fast CDN.

Original photo

The following code sample generates a 150x150 thumbnail of the nice_coupleimage shown above, using multiple face detection based cropping.

Ruby:
cl_image_tag("nice_couple.jpg", :gravity=>"rek_faces", :width=>150, :height=>150, :crop=>"thumb")
PHP:
cl_image_tag("nice_couple.jpg", array("gravity"=>"rek_faces", "width"=>150, "height"=>150, "crop"=>"thumb"))
Python:
CloudinaryImage("nice_couple.jpg").image(gravity="rek_faces", width=150, height=150, crop="thumb")
Node.js:
cloudinary.image("nice_couple.jpg", {gravity: "rek_faces", width: 150, height: 150, crop: "thumb"})
Java:
cloudinary.url().transformation(new Transformation().gravity("rek_faces").width(150).height(150).crop("thumb")).imageTag("nice_couple.jpg");
JS:
cloudinary.imageTag('nice_couple.jpg', {gravity: "rek_faces", width: 150, height: 150, crop: "thumb"}).toHtml();
jQuery:
$.cloudinary.image("nice_couple.jpg", {gravity: "rek_faces", width: 150, height: 150, crop: "thumb"})
React:
<Image publicId="nice_couple.jpg" >
  <Transformation gravity="rek_faces" width="150" height="150" crop="thumb" />
</Image>
Angular:
<cl-image public-id="nice_couple.jpg" >
  <cl-transformation gravity="rek_faces" width="150" height="150" crop="thumb">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Gravity("rek_faces").Width(150).Height(150).Crop("thumb")).BuildImageTag("nice_couple.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().gravity("rek_faces").width(150).height(150).crop("thumb")).generate("nice_couple.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation().setGravity("rek_faces").setWidth(150).setHeight(150).setCrop("thumb")).generate("nice_couple.jpg")!, cloudinary: cloudinary)
150x150 thumbnail of nice_couple.jpg

Eyes detection based cropping

Cloudinary can also dynamically crop your images based on the position of detected eyes. Simply set the gravity parameter to rek_eyes (g_rek_eyes for URLs) to center the image on the detected eyes. The example below delivers a 200x60 thumbnail centered on the eyes:

Ruby:
cl_image_tag("woman.jpg", :gravity=>"rek_eyes", :width=>200, :height=>60, :crop=>"thumb")
PHP:
cl_image_tag("woman.jpg", array("gravity"=>"rek_eyes", "width"=>200, "height"=>60, "crop"=>"thumb"))
Python:
CloudinaryImage("woman.jpg").image(gravity="rek_eyes", width=200, height=60, crop="thumb")
Node.js:
cloudinary.image("woman.jpg", {gravity: "rek_eyes", width: 200, height: 60, crop: "thumb"})
Java:
cloudinary.url().transformation(new Transformation().gravity("rek_eyes").width(200).height(60).crop("thumb")).imageTag("woman.jpg");
JS:
cloudinary.imageTag('woman.jpg', {gravity: "rek_eyes", width: 200, height: 60, crop: "thumb"}).toHtml();
jQuery:
$.cloudinary.image("woman.jpg", {gravity: "rek_eyes", width: 200, height: 60, crop: "thumb"})
React:
<Image publicId="woman.jpg" >
  <Transformation gravity="rek_eyes" width="200" height="60" crop="thumb" />
</Image>
Angular:
<cl-image public-id="woman.jpg" >
  <cl-transformation gravity="rek_eyes" width="200" height="60" crop="thumb">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Gravity("rek_eyes").Width(200).Height(60).Crop("thumb")).BuildImageTag("woman.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().gravity("rek_eyes").width(200).height(60).crop("thumb")).generate("woman.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation().setGravity("rek_eyes").setWidth(200).setHeight(60).setCrop("thumb")).generate("woman.jpg")!, cloudinary: cloudinary)
200x60 thumbnail centered on eyes

Facial overlays

Thanks to the detailed information on the position of facial attributes detected by ReKognition, Cloudinary can add overlays while taking into account the pose of the face, and automatically scale and rotate the overlay accordingly.

Ruby:
cl_image_tag("HarlequinMask.jpg")
PHP:
cl_image_tag("HarlequinMask.jpg")
Python:
CloudinaryImage("HarlequinMask.jpg").image()
Node.js:
cloudinary.image("HarlequinMask.jpg")
Java:
cloudinary.url().imageTag("HarlequinMask.jpg");
JS:
cloudinary.imageTag('HarlequinMask.jpg').toHtml();
jQuery:
$.cloudinary.image("HarlequinMask.jpg")
React:
<Image publicId="HarlequinMask.jpg" >

</Image>
Angular:
<cl-image public-id="HarlequinMask.jpg" >

</cl-image>
.Net:
cloudinary.Api.UrlImgUp.BuildImageTag("HarlequinMask.jpg")
Android:
MediaManager.get().url().generate("HarlequinMask.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().generate("HarlequinMask.jpg")!, cloudinary: cloudinary)
Harlequin mask

For example, in order to automatically overlay the above image of a harlequin mask scaled to 160% relative to the detected eyes in the main image:

Ruby:
cl_image_tag("woman.jpg", :flags=>"region_relative", :gravity=>"rek_eyes", :overlay=>"HarlequinMask", :width=>1.6, :crop=>"scale")
PHP:
cl_image_tag("woman.jpg", array("flags"=>"region_relative", "gravity"=>"rek_eyes", "overlay"=>"HarlequinMask", "width"=>1.6, "crop"=>"scale"))
Python:
CloudinaryImage("woman.jpg").image(flags="region_relative", gravity="rek_eyes", overlay="HarlequinMask", width=1.6, crop="scale")
Node.js:
cloudinary.image("woman.jpg", {flags: "region_relative", gravity: "rek_eyes", overlay: "HarlequinMask", width: "1.6", crop: "scale"})
Java:
cloudinary.url().transformation(new Transformation().flags("region_relative").gravity("rek_eyes").overlay(new Layer().publicId("HarlequinMask")).width(1.6).crop("scale")).imageTag("woman.jpg");
JS:
cloudinary.imageTag('woman.jpg', {flags: "region_relative", gravity: "rek_eyes", overlay: new cloudinary.Layer().publicId("HarlequinMask"), width: "1.6", crop: "scale"}).toHtml();
jQuery:
$.cloudinary.image("woman.jpg", {flags: "region_relative", gravity: "rek_eyes", overlay: new cloudinary.Layer().publicId("HarlequinMask"), width: "1.6", crop: "scale"})
React:
<Image publicId="woman.jpg" >
  <Transformation flags="region_relative" gravity="rek_eyes" overlay="HarlequinMask" width="1.6" crop="scale" />
</Image>
Angular:
<cl-image public-id="woman.jpg" >
  <cl-transformation flags="region_relative" gravity="rek_eyes" overlay="HarlequinMask" width="1.6" crop="scale">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Flags("region_relative").Gravity("rek_eyes").Overlay(new Layer().PublicId("HarlequinMask")).Width(1.6).Crop("scale")).BuildImageTag("woman.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().flags("region_relative").gravity("rek_eyes").overlay(new Layer().publicId("HarlequinMask")).width(1.6).crop("scale")).generate("woman.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation().setFlags("region_relative").setGravity("rek_eyes").setOverlay("HarlequinMask").setWidth(1.6).setCrop("scale")).generate("woman.jpg")!, cloudinary: cloudinary)
Harlequin masked face

Heres another example, this time with glasses.

Ruby:
cl_image_tag("glasses.jpg")
PHP:
cl_image_tag("glasses.jpg")
Python:
CloudinaryImage("glasses.jpg").image()
Node.js:
cloudinary.image("glasses.jpg")
Java:
cloudinary.url().imageTag("glasses.jpg");
JS:
cloudinary.imageTag('glasses.jpg').toHtml();
jQuery:
$.cloudinary.image("glasses.jpg")
React:
<Image publicId="glasses.jpg" >

</Image>
Angular:
<cl-image public-id="glasses.jpg" >

</cl-image>
.Net:
cloudinary.Api.UrlImgUp.BuildImageTag("glasses.jpg")
Android:
MediaManager.get().url().generate("glasses.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().generate("glasses.jpg")!, cloudinary: cloudinary)
Glasses

Overlaying the above image scaled to 150% relative to the detected eyes in the main image, which is then presented as a 200 pixel wide round thumbnail centered on the face:

Ruby:
cl_image_tag("woman.jpg", :transformation=>[
  {:flags=>"region_relative", :gravity=>"rek_eyes", :overlay=>"glasses", :width=>1.5, :crop=>"scale"},
  {:width=>200, :gravity=>"face", :radius=>"max", :crop=>"thumb"}
  ])
PHP:
cl_image_tag("woman.jpg", array("transformation"=>array(
  array("flags"=>"region_relative", "gravity"=>"rek_eyes", "overlay"=>"glasses", "width"=>1.5, "crop"=>"scale"),
  array("width"=>200, "gravity"=>"face", "radius"=>"max", "crop"=>"thumb")
  )))
Python:
CloudinaryImage("woman.jpg").image(transformation=[
  {'flags': "region_relative", 'gravity': "rek_eyes", 'overlay': "glasses", 'width': 1.5, 'crop': "scale"},
  {'width': 200, 'gravity': "face", 'radius': "max", 'crop': "thumb"}
  ])
Node.js:
cloudinary.image("woman.jpg", {transformation: [
  {flags: "region_relative", gravity: "rek_eyes", overlay: "glasses", width: "1.5", crop: "scale"},
  {width: 200, gravity: "face", radius: "max", crop: "thumb"}
  ]})
Java:
cloudinary.url().transformation(new Transformation()
  .flags("region_relative").gravity("rek_eyes").overlay(new Layer().publicId("glasses")).width(1.5).crop("scale").chain()
  .width(200).gravity("face").radius("max").crop("thumb")).imageTag("woman.jpg");
JS:
cloudinary.imageTag('woman.jpg', {transformation: [
  {flags: "region_relative", gravity: "rek_eyes", overlay: new cloudinary.Layer().publicId("glasses"), width: "1.5", crop: "scale"},
  {width: 200, gravity: "face", radius: "max", crop: "thumb"}
  ]}).toHtml();
jQuery:
$.cloudinary.image("woman.jpg", {transformation: [
  {flags: "region_relative", gravity: "rek_eyes", overlay: new cloudinary.Layer().publicId("glasses"), width: "1.5", crop: "scale"},
  {width: 200, gravity: "face", radius: "max", crop: "thumb"}
  ]})
React:
<Image publicId="woman.jpg" >
  <Transformation flags="region_relative" gravity="rek_eyes" overlay="glasses" width="1.5" crop="scale" />
  <Transformation width="200" gravity="face" radius="max" crop="thumb" />
</Image>
Angular:
<cl-image public-id="woman.jpg" >
  <cl-transformation flags="region_relative" gravity="rek_eyes" overlay="glasses" width="1.5" crop="scale">
  </cl-transformation>
  <cl-transformation width="200" gravity="face" radius="max" crop="thumb">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation()
  .Flags("region_relative").Gravity("rek_eyes").Overlay(new Layer().PublicId("glasses")).Width(1.5).Crop("scale").Chain()
  .Width(200).Gravity("face").Radius("max").Crop("thumb")).BuildImageTag("woman.jpg")
Android:
MediaManager.get().url().transformation(new Transformation()
  .flags("region_relative").gravity("rek_eyes").overlay(new Layer().publicId("glasses")).width(1.5).crop("scale").chain()
  .width(200).gravity("face").radius("max").crop("thumb")).generate("woman.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation()
  .setFlags("region_relative").setGravity("rek_eyes").setOverlay("glasses").setWidth(1.5).setCrop("scale").chain()
  .setWidth(200).setGravity("face").setRadius("max").setCrop("thumb")).generate("woman.jpg")!, cloudinary: cloudinary)
Glasses overlayed on eyes

Summary

The ReKognition add-on is utilized to automatically extract detailed face attributes from your images, and enables advanced image manipulation and categorization based on the detected facial data, with relative scaling and rotation of overlays achieved automatically.

ReKognition detect face attributes add-on

The ReKognition add-on is available to all our free and paid plans. If you don't have a Cloudinary account, you are welcome to sign up to our free account and try it out.

Update - December 2015: The add-on described in this post is no longer available since ReKognition terminated their services. However, all features described here are still available via a different and even better add-on: Advanced Facial Attributes Detection

Recent Blog Posts

An Eye-Opening Talk: Building Apps for the Next Billion Users in Africa

William (iChuloo) Imoh, who hails from Lagos, Nigeria, recently embarked on a U.S. speaking tour, February 20-March 12, during which he powwowed with technical and product teams and communities at such renowned enterprises as Netlify, Pluralsight, Lucidchart, Twilio, and more in Salt Lake City, Dallas, Las Vegas, and San Francisco. On March 5, he gave an enlightening talk, entitled International Developers and Development: Building for the Next Billion Users at Cloudinary in Santa Clara, California. Below is a synopsis. For details, see the related slides.

Read more
The Debut of the Cloudinary Customer Advisory Board

Focus on customers has always been Cloudinary’s mantra. Because we owe them our success, we are constantly reaching out to our customers, not just for feedback on our offerings, but also for their vision, wish list, and buy-in of what Cloudinary can do to meet their needs and make them succeed. About six months ago, it occurred to us that it would be beneficial if we could meet regularly with those who are behind innovation at our key customers—executives, product gurus, developers, content managers—to swap strategies, product roadmaps, best practices, and such. In particular, we’d like to solicit actionable feedback as a foundation for our plans of product enhancements.

Read more
Media Management With the Cloudinary-Netlify CMS Integration

Static sites and the JAMstack are quickly becoming a standard for developing safe and performant websites with an optimal workflow for developers. Netlify CMS (not to be confused with the company that created it, Netlify) is an open source content management solution that works especially with static site generators such as Gatsby, Hugo, etc... enabling content storage in your Git repository along with your code for easier versioning, multichannel publishing, and direct content updates in Git.

Read more
Vitaly Friedman's Insights on Media Conferences

Vitaly Friedman is a die-hard devotee of beautiful content. Born in Minsk, Belarus, he studied Computer Science and Mathematics in Germany, unearthing in himself a passion for typography, writing, and design in the interim. After a six-year stint as a freelance designer and developer, he co-founded Smashing Magazine, a leading online publication on web design and development. You can follow SmashingMag on Twitter @SmashingMag.

Read more