Cloudinary Blog

Are your website images ready to embrace the iPhone X notch?

Are your website images ready to embrace the iPhone X notch?

The announcement of the iPhone 8, 8 plus and the iPhone X at the iPhone 10th anniversary Apple event on 12th September 2017, came with a massive buzz.

The iPhone X (pronounced "iPhone 10") has a 5.8-inch super retina screen, which stands out amongst other Apples, giving the machine the tagline “it is all screen”. A resolution of 2436 x 1125 is also featured, making it the highest resolution iPhone to date.

Since the announcement, designers and prototypers have obviously been working in full gear to carve out products and designs to match the upcoming iPhone X.

That Notch

This is arguably one of the fascinating features of the iPhone X! (and the wonderful portrait above too). The Notch up top. Bold, elegant, has the flows around it and still fascinating, even though the guy in the portrait below doesn’t seem so thrilled.

One Notch to Rule All

We have to find a way to make him happy, how to make the notch really beautiful and useful for our images. Let’s do this with Cloudinary image transformation tools.

The iPhone X screen is unique in that the dark space (notch) that houses the camera and other sensors are actually part of the hard glass screen and content displayed flows around this notch. This is a very important aspect to consider in the UI/UX design of products to fit the all screen iPhone. In this article, we will discuss a way to fix your images, testing how it would look on the iPhone X.

spot the notch on top

How do you work with that screen?

Image management and manipulation can be done on-the-fly with Cloudinary. And when I say on-the-fly, that means that images are manipulated using dynamic delivery of their URLs!

Cloudinary also offers mobile-first image optimization for mobile design and the best part, it’s easy to use. These images are cached on the CDN and are immediately available upon request.

Cloudinary’s image management and manipulation service will be used in this article to simulate how images fit on the iPhone X screen. With this, you can test your images and products to see how well they fit on this new type of screenX.

Before we begin, let’s have a look at the sample image we will be manipulating.

image manipulation

Manipulate the image

To perform this test, you need the notch image.

iphone_x_notch overlay

Next, upload the image to be manipulated. In our case, we uploaded the overhead swimming pool image displayed above.

Now we need to apply the manipulation. Images in Cloudinary take the form of:

https://res.cloudinary.com/<cloud_name>/image/upload/<transformation_parameters>/<public_ID>.<image_format_file_extension>

So to adjust the swimming pool image, we use the URL below, and work on the <transformation parameters> portion: https://cloudinary-res.cloudinary.com/image/upload/ <transformation-parameters> /Spencer_Watson.jpg

Cloudinary offers lots of image URL manipulation parameters and they can be found here. For this test, we are going to be using quite a few parameters. The URL might look a bit scary at first, but scroll down a bit and we will walk you through the whole thing.:

Ruby:
cl_image_tag("spencer-watson-36.jpg", :transformation=>[
  {:if=>"ar_gt_1"},
  {:height=>562, :width=>1218, :crop=>"fill"},
  {:overlay=>"iphone_x_notch", :width=>325, :crop=>"scale"},
  {:angle=>90},
  {:angle=>"hflip"},
  {:flags=>"layer_apply", :gravity=>"west"},
  {:if=>"else"},
  {:height=>1218, :width=>562, :crop=>"fill"},
  {:gravity=>"north", :overlay=>"iphone_x_notch", :width=>325, :crop=>"scale"},
  {:if=>"end"},
  {:background=>"#000000", :radius=>54}
  ])
PHP:
cl_image_tag("spencer-watson-36.jpg", array("transformation"=>array(
  array("if"=>"ar_gt_1"),
  array("height"=>562, "width"=>1218, "crop"=>"fill"),
  array("overlay"=>"iphone_x_notch", "width"=>325, "crop"=>"scale"),
  array("angle"=>90),
  array("angle"=>"hflip"),
  array("flags"=>"layer_apply", "gravity"=>"west"),
  array("if"=>"else"),
  array("height"=>1218, "width"=>562, "crop"=>"fill"),
  array("gravity"=>"north", "overlay"=>"iphone_x_notch", "width"=>325, "crop"=>"scale"),
  array("if"=>"end"),
  array("background"=>"#000000", "radius"=>54)
  )))
Python:
CloudinaryImage("spencer-watson-36.jpg").image(transformation=[
  {'if': "ar_gt_1"},
  {'height': 562, 'width': 1218, 'crop': "fill"},
  {'overlay': "iphone_x_notch", 'width': 325, 'crop': "scale"},
  {'angle': 90},
  {'angle': "hflip"},
  {'flags': "layer_apply", 'gravity': "west"},
  {'if': "else"},
  {'height': 1218, 'width': 562, 'crop': "fill"},
  {'gravity': "north", 'overlay': "iphone_x_notch", 'width': 325, 'crop': "scale"},
  {'if': "end"},
  {'background': "#000000", 'radius': 54}
  ])
Node.js:
cloudinary.image("spencer-watson-36.jpg", {transformation: [
  {if: "ar_gt_1"},
  {height: 562, width: 1218, crop: "fill"},
  {overlay: "iphone_x_notch", width: 325, crop: "scale"},
  {angle: 90},
  {angle: "hflip"},
  {flags: "layer_apply", gravity: "west"},
  {if: "else"},
  {height: 1218, width: 562, crop: "fill"},
  {gravity: "north", overlay: "iphone_x_notch", width: 325, crop: "scale"},
  {if: "end"},
  {background: "#000000", radius: 54}
  ]})
Java:
cloudinary.url().transformation(new Transformation()
  .if("ar_gt_1").chain()
  .height(562).width(1218).crop("fill").chain()
  .overlay(new Layer().publicId("iphone_x_notch")).width(325).crop("scale").chain()
  .angle(90).chain()
  .angle("hflip").chain()
  .flags("layer_apply").gravity("west").chain()
  .if("else").chain()
  .height(1218).width(562).crop("fill").chain()
  .gravity("north").overlay(new Layer().publicId("iphone_x_notch")).width(325).crop("scale").chain()
  .if("end").chain()
  .background("#000000").radius(54)).imageTag("spencer-watson-36.jpg");
JS:
cloudinary.imageTag('spencer-watson-36.jpg', {transformation: [
  {if: "ar_gt_1"},
  {height: 562, width: 1218, crop: "fill"},
  {overlay: new cloudinary.Layer().publicId("iphone_x_notch"), width: 325, crop: "scale"},
  {angle: 90},
  {angle: "hflip"},
  {flags: "layer_apply", gravity: "west"},
  {if: "else"},
  {height: 1218, width: 562, crop: "fill"},
  {gravity: "north", overlay: new cloudinary.Layer().publicId("iphone_x_notch"), width: 325, crop: "scale"},
  {if: "end"},
  {background: "#000000", radius: 54}
  ]}).toHtml();
jQuery:
$.cloudinary.image("spencer-watson-36.jpg", {transformation: [
  {if: "ar_gt_1"},
  {height: 562, width: 1218, crop: "fill"},
  {overlay: new cloudinary.Layer().publicId("iphone_x_notch"), width: 325, crop: "scale"},
  {angle: 90},
  {angle: "hflip"},
  {flags: "layer_apply", gravity: "west"},
  {if: "else"},
  {height: 1218, width: 562, crop: "fill"},
  {gravity: "north", overlay: new cloudinary.Layer().publicId("iphone_x_notch"), width: 325, crop: "scale"},
  {if: "end"},
  {background: "#000000", radius: 54}
  ]})
React:
<Image publicId="spencer-watson-36.jpg" >
  <Transformation if="ar_gt_1" />
  <Transformation height="562" width="1218" crop="fill" />
  <Transformation overlay="iphone_x_notch" width="325" crop="scale" />
  <Transformation angle="90" />
  <Transformation angle="hflip" />
  <Transformation flags="layer_apply" gravity="west" />
  <Transformation if="else" />
  <Transformation height="1218" width="562" crop="fill" />
  <Transformation gravity="north" overlay="iphone_x_notch" width="325" crop="scale" />
  <Transformation if="end" />
  <Transformation background="#000000" radius="54" />
</Image>
Angular:
<cl-image public-id="spencer-watson-36.jpg" >
  <cl-transformation if="ar_gt_1">
  </cl-transformation>
  <cl-transformation height="562" width="1218" crop="fill">
  </cl-transformation>
  <cl-transformation overlay="iphone_x_notch" width="325" crop="scale">
  </cl-transformation>
  <cl-transformation angle="90">
  </cl-transformation>
  <cl-transformation angle="hflip">
  </cl-transformation>
  <cl-transformation flags="layer_apply" gravity="west">
  </cl-transformation>
  <cl-transformation if="else">
  </cl-transformation>
  <cl-transformation height="1218" width="562" crop="fill">
  </cl-transformation>
  <cl-transformation gravity="north" overlay="iphone_x_notch" width="325" crop="scale">
  </cl-transformation>
  <cl-transformation if="end">
  </cl-transformation>
  <cl-transformation background="#000000" radius="54">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation()
  .If("ar_gt_1").Chain()
  .Height(562).Width(1218).Crop("fill").Chain()
  .Overlay(new Layer().PublicId("iphone_x_notch")).Width(325).Crop("scale").Chain()
  .Angle(90).Chain()
  .Angle("hflip").Chain()
  .Flags("layer_apply").Gravity("west").Chain()
  .If("else").Chain()
  .Height(1218).Width(562).Crop("fill").Chain()
  .Gravity("north").Overlay(new Layer().PublicId("iphone_x_notch")).Width(325).Crop("scale").Chain()
  .If("end").Chain()
  .Background("#000000").Radius(54)).BuildImageTag("spencer-watson-36.jpg")
Android:
MediaManager.get().url().transformation(new Transformation()
  .if("ar_gt_1").chain()
  .height(562).width(1218).crop("fill").chain()
  .overlay(new Layer().publicId("iphone_x_notch")).width(325).crop("scale").chain()
  .angle(90).chain()
  .angle("hflip").chain()
  .flags("layer_apply").gravity("west").chain()
  .if("else").chain()
  .height(1218).width(562).crop("fill").chain()
  .gravity("north").overlay(new Layer().publicId("iphone_x_notch")).width(325).crop("scale").chain()
  .if("end").chain()
  .background("#000000").radius(54)).generate("spencer-watson-36.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation()
  .setIf("ar_gt_1").chain()
  .setHeight(562).setWidth(1218).setCrop("fill").chain()
  .setOverlay("iphone_x_notch").setWidth(325).setCrop("scale").chain()
  .setAngle(90).chain()
  .setAngle("hflip").chain()
  .setFlags("layer_apply").setGravity("west").chain()
  .setIf("else").chain()
  .setHeight(1218).setWidth(562).setCrop("fill").chain()
  .setGravity("north").setOverlay("iphone_x_notch").setWidth(325).setCrop("scale").chain()
  .setIf("end").chain()
  .setBackground("#000000").setRadius(54)).generate("spencer-watson-36.jpg")!, cloudinary: cloudinary)
image manipulation

Looking at the URL, you can see what it means:

  • if_ar_gt_1: If the aspect ratio of the image is greater than 1 (landscape):, c_fill,h_562,w_1218: resize the image to a height of 562 and a width of 1218 maintaining aspect ratio c_scale,l_iphone_x_notch,w_325: add the iphone_x_notch image as an overlay resized to a width of 325 (regardless of its aspect ratio) a_90/a_hflip: rotate the iphone_x_notch overlay by 90 degrees and do a horizontal mirror flip on it, g_west,fl_layer_apply: ensure the f the notch overlay is located on the far left of the parent image. End transformations to this layer.

  • if_else: But if the aspect ratio of the image is not greater than 1 (portrait): c_fill,h_1218,w_562: resize the image to a height of 1218 and a width of 562, maintaining aspect ratio c_scale,g_north,l_iphone_x_notch,w_325: add a layer of the iphonexnotch image resized to a width of 325 regardless of its aspect ratio and place it at the center-north of the parent image.

  • if_end: End the If statement.

  • b_rgb:000000,r_54: Apply a black background to the image and round the corners to a border radius of 54.

Let's take a look at this same transformation on another image, this time a landscape image. All you have to do is use the same conditional transformation URL with a different public ID:

Ruby:
cl_image_tag("country_sunset.jpg", :transformation=>[
  {:if=>"ar_gt_1"},
  {:height=>562, :width=>1218, :crop=>"fill"},
  {:overlay=>"iphone_x_notch", :width=>325, :crop=>"scale"},
  {:angle=>90},
  {:angle=>"hflip"},
  {:flags=>"layer_apply", :gravity=>"west"},
  {:if=>"else"},
  {:height=>1218, :width=>562, :crop=>"fill"},
  {:gravity=>"north", :overlay=>"iphone_x_notch", :width=>325},
  {:if=>"end"},
  {:background=>"#000000", :radius=>54}
  ])
PHP:
cl_image_tag("country_sunset.jpg", array("transformation"=>array(
  array("if"=>"ar_gt_1"),
  array("height"=>562, "width"=>1218, "crop"=>"fill"),
  array("overlay"=>"iphone_x_notch", "width"=>325, "crop"=>"scale"),
  array("angle"=>90),
  array("angle"=>"hflip"),
  array("flags"=>"layer_apply", "gravity"=>"west"),
  array("if"=>"else"),
  array("height"=>1218, "width"=>562, "crop"=>"fill"),
  array("gravity"=>"north", "overlay"=>"iphone_x_notch", "width"=>325),
  array("if"=>"end"),
  array("background"=>"#000000", "radius"=>54)
  )))
Python:
CloudinaryImage("country_sunset.jpg").image(transformation=[
  {'if': "ar_gt_1"},
  {'height': 562, 'width': 1218, 'crop': "fill"},
  {'overlay': "iphone_x_notch", 'width': 325, 'crop': "scale"},
  {'angle': 90},
  {'angle': "hflip"},
  {'flags': "layer_apply", 'gravity': "west"},
  {'if': "else"},
  {'height': 1218, 'width': 562, 'crop': "fill"},
  {'gravity': "north", 'overlay': "iphone_x_notch", 'width': 325},
  {'if': "end"},
  {'background': "#000000", 'radius': 54}
  ])
Node.js:
cloudinary.image("country_sunset.jpg", {transformation: [
  {if: "ar_gt_1"},
  {height: 562, width: 1218, crop: "fill"},
  {overlay: "iphone_x_notch", width: 325, crop: "scale"},
  {angle: 90},
  {angle: "hflip"},
  {flags: "layer_apply", gravity: "west"},
  {if: "else"},
  {height: 1218, width: 562, crop: "fill"},
  {gravity: "north", overlay: "iphone_x_notch", width: 325},
  {if: "end"},
  {background: "#000000", radius: 54}
  ]})
Java:
cloudinary.url().transformation(new Transformation()
  .if("ar_gt_1").chain()
  .height(562).width(1218).crop("fill").chain()
  .overlay(new Layer().publicId("iphone_x_notch")).width(325).crop("scale").chain()
  .angle(90).chain()
  .angle("hflip").chain()
  .flags("layer_apply").gravity("west").chain()
  .if("else").chain()
  .height(1218).width(562).crop("fill").chain()
  .gravity("north").overlay(new Layer().publicId("iphone_x_notch")).width(325).chain()
  .if("end").chain()
  .background("#000000").radius(54)).imageTag("country_sunset.jpg");
JS:
cloudinary.imageTag('country_sunset.jpg', {transformation: [
  {if: "ar_gt_1"},
  {height: 562, width: 1218, crop: "fill"},
  {overlay: new cloudinary.Layer().publicId("iphone_x_notch"), width: 325, crop: "scale"},
  {angle: 90},
  {angle: "hflip"},
  {flags: "layer_apply", gravity: "west"},
  {if: "else"},
  {height: 1218, width: 562, crop: "fill"},
  {gravity: "north", overlay: new cloudinary.Layer().publicId("iphone_x_notch"), width: 325},
  {if: "end"},
  {background: "#000000", radius: 54}
  ]}).toHtml();
jQuery:
$.cloudinary.image("country_sunset.jpg", {transformation: [
  {if: "ar_gt_1"},
  {height: 562, width: 1218, crop: "fill"},
  {overlay: new cloudinary.Layer().publicId("iphone_x_notch"), width: 325, crop: "scale"},
  {angle: 90},
  {angle: "hflip"},
  {flags: "layer_apply", gravity: "west"},
  {if: "else"},
  {height: 1218, width: 562, crop: "fill"},
  {gravity: "north", overlay: new cloudinary.Layer().publicId("iphone_x_notch"), width: 325},
  {if: "end"},
  {background: "#000000", radius: 54}
  ]})
React:
<Image publicId="country_sunset.jpg" >
  <Transformation if="ar_gt_1" />
  <Transformation height="562" width="1218" crop="fill" />
  <Transformation overlay="iphone_x_notch" width="325" crop="scale" />
  <Transformation angle="90" />
  <Transformation angle="hflip" />
  <Transformation flags="layer_apply" gravity="west" />
  <Transformation if="else" />
  <Transformation height="1218" width="562" crop="fill" />
  <Transformation gravity="north" overlay="iphone_x_notch" width="325" />
  <Transformation if="end" />
  <Transformation background="#000000" radius="54" />
</Image>
Angular:
<cl-image public-id="country_sunset.jpg" >
  <cl-transformation if="ar_gt_1">
  </cl-transformation>
  <cl-transformation height="562" width="1218" crop="fill">
  </cl-transformation>
  <cl-transformation overlay="iphone_x_notch" width="325" crop="scale">
  </cl-transformation>
  <cl-transformation angle="90">
  </cl-transformation>
  <cl-transformation angle="hflip">
  </cl-transformation>
  <cl-transformation flags="layer_apply" gravity="west">
  </cl-transformation>
  <cl-transformation if="else">
  </cl-transformation>
  <cl-transformation height="1218" width="562" crop="fill">
  </cl-transformation>
  <cl-transformation gravity="north" overlay="iphone_x_notch" width="325">
  </cl-transformation>
  <cl-transformation if="end">
  </cl-transformation>
  <cl-transformation background="#000000" radius="54">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation()
  .If("ar_gt_1").Chain()
  .Height(562).Width(1218).Crop("fill").Chain()
  .Overlay(new Layer().PublicId("iphone_x_notch")).Width(325).Crop("scale").Chain()
  .Angle(90).Chain()
  .Angle("hflip").Chain()
  .Flags("layer_apply").Gravity("west").Chain()
  .If("else").Chain()
  .Height(1218).Width(562).Crop("fill").Chain()
  .Gravity("north").Overlay(new Layer().PublicId("iphone_x_notch")).Width(325).Chain()
  .If("end").Chain()
  .Background("#000000").Radius(54)).BuildImageTag("country_sunset.jpg")
Android:
MediaManager.get().url().transformation(new Transformation()
  .if("ar_gt_1").chain()
  .height(562).width(1218).crop("fill").chain()
  .overlay(new Layer().publicId("iphone_x_notch")).width(325).crop("scale").chain()
  .angle(90).chain()
  .angle("hflip").chain()
  .flags("layer_apply").gravity("west").chain()
  .if("else").chain()
  .height(1218).width(562).crop("fill").chain()
  .gravity("north").overlay(new Layer().publicId("iphone_x_notch")).width(325).chain()
  .if("end").chain()
  .background("#000000").radius(54)).generate("country_sunset.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation()
  .setIf("ar_gt_1").chain()
  .setHeight(562).setWidth(1218).setCrop("fill").chain()
  .setOverlay("iphone_x_notch").setWidth(325).setCrop("scale").chain()
  .setAngle(90).chain()
  .setAngle("hflip").chain()
  .setFlags("layer_apply").setGravity("west").chain()
  .setIf("else").chain()
  .setHeight(1218).setWidth(562).setCrop("fill").chain()
  .setGravity("north").setOverlay("iphone_x_notch").setWidth(325).chain()
  .setIf("end").chain()
  .setBackground("#000000").setRadius(54)).generate("country_sunset.jpg")!, cloudinary: cloudinary)
Test landscape image on iPhone X

Bundle Transformations with Named Transformation

Let’s do one more cool thing, it feels weird to have to write all those transformation parameters for every image to be transformed. Cloudinary offers the named transformation feature which is used to bundle transformation parameter into one single re-usable parameter.

In the transformation panel of the Cloudinary dashboard, a list of all transformations currently delivered by Cloudinary on the current user account can be found. Click the edit link at the bottom of each transformation and use “Save as” to save the transformation with whichever name you choose. I choose “iphonex”. Once saved, on the list of transformations you can find the named transformation listed as iphonex. This “transformation pack” is now available to all images stored and can be applied to our test image with:

Ruby:
cl_image_tag("spencer-watson.jpg", :transformation=>["iphonex"])
PHP:
cl_image_tag("spencer-watson.jpg", array("transformation"=>array("iphonex")))
Python:
CloudinaryImage("spencer-watson.jpg").image(transformation=["iphonex"])
Node.js:
cloudinary.image("spencer-watson.jpg", {transformation: ["iphonex"]})
Java:
cloudinary.url().transformation(new Transformation().named("iphonex")).imageTag("spencer-watson.jpg");
JS:
cloudinary.imageTag('spencer-watson.jpg', {transformation: ["iphonex"]}).toHtml();
jQuery:
$.cloudinary.image("spencer-watson.jpg", {transformation: ["iphonex"]})
React:
<Image publicId="spencer-watson.jpg" >
  <Transformation transformation={["iphonex"]} />
</Image>
Angular:
<cl-image public-id="spencer-watson.jpg" >
  <cl-transformation transformation={{["iphonex"]}}>
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Named("iphonex")).BuildImageTag("spencer-watson.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().named("iphonex")).generate("spencer-watson.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation().setNamed("iphonex")).generate("spencer-watson.jpg")!, cloudinary: cloudinary)
iPhone X

Read more on named transformations here and how to implement them here.

Conclusion

Now you have seen how you can manipulate your images to test how they look on the iPhone X screen. You can try this out with several other images and if you are building a product be sure to test it to see how it looks on the iPhone X. This is just one of an unlimited number of cool things you can do with the Cloudinary image manipulation parameters. Check out the demo here

Recent Blog Posts

Hipcamp Optimizes Images and Improves Page Load Times With Cloudinary

When creating a website that allows campers to discover great destinations, Hipcamp put a strong emphasis on featuring high-quality images that showcased the list of beautiful locations, regardless of whether users accessed the site on a desktop, tablet, or phone. Since 2015, Hipcamp has relied on Cloudinary’s image management solution to automate cropping and image optimization, enabling instant public delivery of photos, automatic tagging based on content recognition, and faster loading of webpages. In addition, Hipcamp was able to maintain the high standards it holds for the look and feel of its website.

Read more
New Image File Format: FUIF: Why Do We Need a New Image Format

In my last post, I introduced FUIF, a new, free, and universal image format I’ve created. In this post and other follow-up pieces, I will explain the why, what, and how of FUIF.

Even though JPEG is still the most widely-used image file format on the web, it has limitations, especially the subset of the format that has been implemented in browsers and that has, therefore, become the de facto standard. Because JPEG has a relatively verbose header, it cannot be used (at least not as is) for low-quality image placeholders (LQIP), for which you need a budget of a few hundred bytes. JPEG cannot encode alpha channels (transparency); it is restricted to 8 bits per channel; and its entropy coding is no longer state of the art. Also, JPEG is not fully “responsive by design.” There is no easy way to find a file’s truncation offsets and it is limited to a 1:8 downscale (the DC coefficients). If you want to use the same file for an 8K UHD display (7,680 pixels wide) and for a smart watch (320 pixels wide), 1:8 is not enough. And finally, JPEG does not work well with nonphotographic images and cannot do fully lossless compression.

Read more
 New Image File Format: FUIF:Lossy, Lossless, and Free

I've been working to create a new image format, which I'm calling FUIF, or Free Universal Image Format. That’s a rather pretentious name, I know. But I couldn’t call it the Free Lossy Image Format (FLIF) because that acronym is not available any more (see below) and FUIF can do lossless, too, so it wouldn’t be accurate either.

Read more