Cloudinary Blog

Quick Guide: Using WebP on Your Website or Native Apps

Using WebP for Android on Your Website or Native Apps

JPEG and PNG are the predominant formats used for image delivery on the web. According to a W3Techs survey, 74 percent of the websites worldwide use these formats, and for good reason: They are supported across all browsers. Still, there are newer image formats with better performance and a leading example is the WebP format. Here we'll show how to easily implement WebP in order to reduce your images weight by approx. 30 percent and improve your website and native apps image load time.

What is WebP?

WebP is a modern image format developed by Google that is specifically designed for web delivery. It aims at creating smaller, better looking images that can help make the web faster. WebP typically achieves an average of 30% more compression than JPEG, without loss of image quality. Interestingly enough WebP is only supported by Chrome, Android and Opera browsers, which would be a compelling reason not to use it. However, Chrome usage has risen year-over-year, reaching 75 percent according to W3Schools survey. Opera adds another 1 percent, which means that optimization for Chrome (and Opera) is worth pursuing.

What about my native mobile apps?

Looking into support for native apps, WebP is supported by Android (since it’s made by Google). Lossy WebP images are supported in Android 4.0 (API level 14) and higher, and lossless and transparent WebP images are supported in Android 4.3 (API level 18) and higher. WebP can also be implemented on iOS by using a dedicated library to encode and decode images. The library, is called libwebp, is available as precompiled binaries for iOS or as source code.

WebP supports:

  • Lossy and lossless compression options
  • Transparency
  • XMP (Extensible Metadata Platform) metadata
  • ICC (International Color Consortium) profiles
  • Animation
  • Color Space:
    • Lossy WebP works exclusively with 8-bit YUV420 format.
    • Lossless WebP works exclusively with RGBA format.

Side by Side Comparison

JPEG -> WebP (Resolution: 300x190, Quality: 80)

JPEG JPEG(15KB) WebP WebP(10KB)

PNG -> WebP (Resolution: 300 x 192. Image with transparency)

PNG PNG(55KB) WebP WebP(39KB)

A GIF -> A WebP (Resolution: 300x168, Quality: 80. Animation)

GIF GIF(2.23MB) Animated WebP Animated WebP(887KB)

Implementing WebP Using <picture>

One way to implement WebP is using <picture>, which enables you to define different image sources. The browser will download the first option, according to the supported type. However this will require using a polyfill, such as picturefill, for browsers that don’t support HTML5 picture tag.

<picture>
  <source type="image/webp" srcset="images/cat.webp">
  <img src="images/cat.jpg" alt="a cat">
</picture>

Easy Implementation for Web delivery

Instead of creating a WebP variant for each image, let's explore an easier alternative. Once an image is uploaded to Cloudinary, you can request it to be sent in the optimal image format according to the user browser. In case the image is requested from Chrome (or Opera), it will be automatically converted to WebP on the first request and then cached on the CDN for any subsequent request. By using the same URL for all image formats, effortlessly saving 30 percent image bandwidth on average. Using this method with Cloudinary also will deliver the image as JPEG to Firefox users and convert the image the same way to JPEG-XR for IE users (see more on automatic format).

Ruby:
cl_image_tag("dog2.jpg", :width=>500, :height=>333, :crop=>"fill", :fetch_format=>:auto)
PHP:
cl_image_tag("dog2.jpg", array("width"=>500, "height"=>333, "crop"=>"fill", "fetch_format"=>"auto"))
Python:
CloudinaryImage("dog2.jpg").image(width=500, height=333, crop="fill", fetch_format="auto")
Node.js:
cloudinary.image("dog2.jpg", {width: 500, height: 333, crop: "fill", fetch_format: "auto"})
Java:
cloudinary.url().transformation(new Transformation().width(500).height(333).crop("fill").fetchFormat("auto")).imageTag("dog2.jpg");
JS:
cloudinary.imageTag('dog2.jpg', {width: 500, height: 333, crop: "fill", fetchFormat: "auto"}).toHtml();
jQuery:
$.cloudinary.image("dog2.jpg", {width: 500, height: 333, crop: "fill", fetch_format: "auto"})
React:
<Image publicId="dog2.jpg" >
  <Transformation width="500" height="333" crop="fill" fetchFormat="auto" />
</Image>
Angular:
<cl-image public-id="dog2.jpg" >
  <cl-transformation width="500" height="333" crop="fill" fetch-format="auto">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Width(500).Height(333).Crop("fill").FetchFormat("auto")).BuildImageTag("dog2.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().width(500).height(333).crop("fill").fetchFormat("auto")).generate("dog2.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation().setWidth(500).setHeight(333).setCrop("fill").setFetchFormat("auto")).generate("dog2.jpg")!, cloudinary: cloudinary)
Dog

Native Mobile Apps Support

In the case of a native mobile app, the WebP format can be fixed for the Android app using the same image already uploaded to Cloudinary and used for the web. For the native app, we can use the Android SDK or simply construct the URL.

On your Android App:

cloudinary.url().transformation(new Transformation().width(500).height(333).crop("fill")).fetchFormat("webp")).generate("dog.jpg")

The equivalent URL is: https://res.cloudinary.com/cld-name/image/upload/c_fill,f_webp,h_333,w_500/dog.jpg

Adding Quality to the Game

The image quality setting, which is used to define the depth of the lossy compression, has an effect on the results as well. Finding the sweetspot for your images require analyzing which quality setting fits them. For example, you may test quality 80 and quality 90 to verify the image weight reduction and whether it meets the required visual quality.

However, since each image eventually has it own optimal quality setting, using Cloudinary’s automatic quality option (q_auto) will automatically find the quality level for each image according to the required visual level (more on automatic quality). Using both automatic format and quality achieves full automation and lets Cloudinary decide on-the-fly the best quality setting and format to deliver. The visual quality level itself can be set according to the delivery method. For example, you can use the default “good” visual quality level on the web and an “eco” level on your native mobile app in order to save more bandwidth.

Using Automatic Quality for Full Automation

On your website:

Ruby:
cl_image_tag("dog2.jpg", :width=>500, :height=>333, :quality=>"auto", :crop=>"fill", :fetch_format=>:auto)
PHP:
cl_image_tag("dog2.jpg", array("width"=>500, "height"=>333, "quality"=>"auto", "crop"=>"fill", "fetch_format"=>"auto"))
Python:
CloudinaryImage("dog2.jpg").image(width=500, height=333, quality="auto", crop="fill", fetch_format="auto")
Node.js:
cloudinary.image("dog2.jpg", {width: 500, height: 333, quality: "auto", crop: "fill", fetch_format: "auto"})
Java:
cloudinary.url().transformation(new Transformation().width(500).height(333).quality("auto").crop("fill").fetchFormat("auto")).imageTag("dog2.jpg");
JS:
cloudinary.imageTag('dog2.jpg', {width: 500, height: 333, quality: "auto", crop: "fill", fetchFormat: "auto"}).toHtml();
jQuery:
$.cloudinary.image("dog2.jpg", {width: 500, height: 333, quality: "auto", crop: "fill", fetch_format: "auto"})
React:
<Image publicId="dog2.jpg" >
  <Transformation width="500" height="333" quality="auto" crop="fill" fetchFormat="auto" />
</Image>
Angular:
<cl-image public-id="dog2.jpg" >
  <cl-transformation width="500" height="333" quality="auto" crop="fill" fetch-format="auto">
  </cl-transformation>
</cl-image>
.Net:
cloudinary.Api.UrlImgUp.Transform(new Transformation().Width(500).Height(333).Quality("auto").Crop("fill").FetchFormat("auto")).BuildImageTag("dog2.jpg")
Android:
MediaManager.get().url().transformation(new Transformation().width(500).height(333).quality("auto").crop("fill").fetchFormat("auto")).generate("dog2.jpg");
iOS:
imageView.cldSetImage(cloudinary.createUrl().setTransformation(CLDTransformation().setWidth(500).setHeight(333).setQuality("auto").setCrop("fill").setFetchFormat("auto")).generate("dog2.jpg")!, cloudinary: cloudinary)
Dog

On your Android App:

cloudinary.url().transformation(new Transformation().width(500).height(333).crop("fill")).fetchFormat("webp").quality("auto:eco")).generate("dog.jpg")

The equivalent URL is: https://res.cloudinary.com/cld-name/image/upload/c_fill,f_webp,h_333,q_auto:eco,w_500/dog.jpg

Summary

Managing images can be challenging because supporting the same image with different sizes and crops for responsive design requires significant development effort. Still, since images are 60 percent to 65 percent of the average website, the savings are significant and therefore automating the process makes a lot of sense. Luckily all of this can be done on-the-fly using Cloudinary, so you can benefit from the advantages WebP provides without requiring additional development effort to support it.

Recent Blog Posts

Techniques for Image Enhancement With Cloudinary

Indisputably, visual presentations of events, places, people, and even intangible things make deeper impressions and linger in our minds for longer than words or any other communication medium, hence the meteoric rise through the ages of transmitting ideas and promoting brands in the business sector through images. The recent discovery of the first image of a black hole has generated calls for techniques for enhancing digital images. Specifically, the clamor is for quality-oriented tweaks that would result in optimal display and increased visibility of slightly hidden yet important content.

Read more
Video Manipulations and Delivery for Angular Video Apps

On social media, videos posted by users constitute a significant amount of the content appeal on those platforms. From upload to manipulation to delivery, a smooth, efficient, and effective pipeline for the posting process is mandatory to ensure consistent user sessions and their steadily increasing volume. However, building such an infrastructure is a complex, labor-intensive, and problem-prone undertaking.

Read more
Green Screen Queen: Dynamic Video Transparency Fit For Royalty

If you were reading your social media or news feeds on or around June 11 this year, no doubt you came across your fair share of posts about Queen Elizabeth and her outfit-color faux pas. For her 90th birthday, she chose a solid neon green suit, and it didn't take long for Photoshop fanatics to suggest alternative designs for the Queen's green-screen threads.

Read more
Content-Aware Automatic Cropping for Video

Delivering videos according to the aspect ratios defined by social media for multiple devices and platforms is a growing challenge. The continuously rising volume of vertical videos and the corresponding increase in video traffic on mobile devices (now up to 57% of online videos watched) have only exacerbated the situation, with no letup in sight.

Read more
Use a custom function in the image delivery pipeline

Cloudinary offers a wide array of image manipulations and effects to apply to images as part of our image-processing pipeline, helping to ensure that your images fit the graphic design of your website or mobile application. Cloudinary is an open platform, and you can use our APIs, Widgets and UI to build the media management flow that matches your needs.

Read more