Cloudinary Blog

An Introduction to Progressive Image Rendering

An Introduction to Progressive Image Rendering


[Author's Note:] This article is inspired by the work of José Manuel Pérez. A lot of the information presented here appeared, in one form or another, in a talk Perez gave at Render 2017 in Oxford, England. If this article inspires you, check out his original talk.


Images play important roles in websites, helping to improve conversions, enhance user experience and increase their engagement. There’s almost nothing better than an ideal image to draw the eye to where you want it to go. That’s why more than two-thirds of the web’s data is comprised of images.

However, using images has its downsides. The processing power required for large images is often too great for small devices, it can be a challenge to manage large numbers of images, and bandwidth usage can be costly. In this article, we’ll look at how you can save your users bandwidth and time by loading and rendering well-optimized images lazily and progressively.

Lazy Loading
Minimums.com - Improving the UX of the site

Progressive loading
Kennedyandoswald.com - Increasing user engagement

Well-optimized images

The first step in optimizing your images is choosing the right image format.

And the first format you should consider should always be SVG. We should use SVG illustrations as often as possible, taking advantage of the way they can be resized, reshaped, restyled and even further compressed. A lot of photos on the web are designed to portray concepts, rather than specific people, places or things. In these cases, vector graphics may even be an improvement to using photos, especially stock photos.

We will always need some bitmap images. There are cases where you just need to use a photo to get your point across, or display a product, or show off a real person's beautiful smile.

Currently, JPEG is still one of the best formats for bitmap images because of its widespread support, and the various compression algorithms available. You can get large, good-looking JPEGs that are surprisingly small in file size.

However, WebP is fast becoming a competitor to JPEG, and its compression is far, far better. It's already supported in Chrome and Opera (and presumably any other Blink-based browser), and will soon be supported Firefox. Safari and Edge are hopefully not far behind. In the meantime, you can use the <picture> and <source> elements with the type attribute to send WebPs to browsers that support them, and JPEGs to everyone else.

PNG and GIF are, of course, better suited to those occasions when you need transparency or animation, respectively.

Lazy-loaded images

Lazy loading is the practice of not loading content until the user scrolls down far enough to see it. This practice can save a lot of bandwidth, and is especially useful on pages where the call to action (CTA) is right at the top of the page. If half your users hit the CTA button without reading further, why load other content when you don't need it?

Here’s how it typically works: You use JavaScript to see if the space where the image will load is within the viewport. If yes, then you load the image. This approach works well enough, except that you have to run that check every time the user scrolls, or resizes the browser window. This can, somewhat ironically, hamper performance.

Fortunately, the new IntersectionObserver API offers a fix. With this API, you don't bind the image loading to scroll or resize events. You bind it to an "image entering the rendered area" event, which would only happen once per image, presumably. However, the IntersectionObserver API is only currently implemented in Chrome and Opera. It is being developed in Firefox and Edge, though, so it will be a viable solution in most cases before long.

IntersectionObserver will be great for people that want to build their own solutions. For the rest of us, there’s lazysizes. It’s a fully-functional, highly-optimized, and battle-tested lazy image loading library that writes out responsive sizes attributes for you, too. It works on every major browser, today (and there’s even an experimental version with IntersectionObserver support).

A good example is shown below:

See the Pen Lazy loading images by Eitan Peer (@eitanp461) on CodePen.

Check out the source code on Codepen. This demo was developed by Eitan Peer.

Progressive images

A “progressive” image starts off low-resolution, and progressively enhances itself over time. There are two ways we can achieve this: progressive encoding, and placeholders.

Progressive encoding

JPEG, GIF and PNG all provide different forms of progressive encoding. Browsers can paint low-res approximations of progressively encoded images to screen, long before the full file has been downloaded. For a thorough deep dive into progressive JPEGs, please see “Progressive JPEGs and Green Martians” by Jon Sneyers on the Cloudinary blog.

Placeholders

Placeholders Placeholders don't actually make images load faster, but they can help your users remain patient. They simply tell the user that images are on the way, if the user will just wait a second. These are typically used on sites that have to load a lot of images.

Placeholders come in several varieties:

  • Empty spaces that match the dimensions of the image to be loaded.
  • Icons - Like empty spaces, but they use a picture icon to represent the content that is yet to be loaded.
  • Solid colors - Like empty spaces, but filled with color. Examples include Bleacher Report and Google Images.
  • Low-res versions of the images - Some sites will load a small, blurry version of the image first, then transition the full image in when it's ready. Low-res image placeholders can be combined with responsive and lazy loading techniques to make sure that users get only the bytes they need, when they need them. The classic example of this is Medium.

Lazy Loading
Blurred version of the image loading…

Lazy Loading
Image downloaded and fully loaded on the page

Codepen Demo here:

See the Pen Progressive image Loading -Blurr/Sharper by Cloudinary (@Cloudinary) on CodePen.

Did We Mention SVG?

José Manuel Pérez, who inspired this article, developed a newer, more experimental placeholder technique. He runs an edge detection algorithm on the images (with Canny edge detector) that creates a stylized illustration of the image, which is then replaced by the actual image once it loads.

The illustrations are animated SVG files, so they load very quickly. Here's a live demo, and here's the official tutorial on Github.

There are still some potential drawbacks of using placeholders. Simply put, if the JavaScript meant to load in the image when it's ready breaks for any reason, the user might get stuck with a very blurred version of the image (or whatever placeholder you're using). When Medium first started using their placeholder method, they got a lot of complaints about just that.

Putting It All Together

In the end, images are bandwidth, and bandwidth is money. You need to decide whether you want to, or have to, use a photo in the first place. If you do, select the right format for your project. Optimize your images as much as you can. Then decide how much you can rely on JavaScript.

Lazy loading and placeholder solutions both tend to rely quite a bit on JavaScript, and if that breaks, so does your site. JavaScript can, of course, break for any number of reasons, including slow connections, slow devices, outdated software and other factors. That’s why you need to know your user base, and make your decisions accordingly, while implementing fallbacks.

If you load your well-optimized images lazily and progressively, your site will feel faster, and your users will love you for it, even if they're not quite sure why.

Ezequiel Bruni Ezequiel Bruni is a web/UX designer, writer, and aspiring e-sports commentator. When he's not up to his finely-chiseled ears in wire-frames and front-end code, or ranting about the same, he indulges in video games, beer, pizza, video games, fantasy novels, stand-up comedy, and video games..

Recent Blog Posts

Build a WhatsApp Clone with Automatic Image Optimization

In the previous post, we showed how to upload images to a Cloudinary server. In this part, we will play with some of the features we see on the WhatsApp technology. After you or your users have uploaded image assets to Cloudinary, you can deliver them via dynamic URLs. You can include instructions in your dynamic URLs that tell Cloudinary to manipulate your assets using a set of transformation parameters. All image manipulations and image optimizations are performed automatically in the cloud and your transformed assets are automatically optimized before they are routed through a fast CDN to the end user for an optimal user experience. For example, you can resize and crop, add overlays, blur or pixelate faces, apply a variety of special effects and filters, and apply settings to optimize your images and to deliver them responsively.

Read more
With automatic video subtitles, silence speaks volumes

The last time you scrolled through the feed on your favorite social site, chances are that some videos caught your attention, and chances are, they were playing silently.

On the other hand, what was your reaction the last time you opened a web page and a video unexpectedly began playing with sound? If you are anything like me, the first thing you did was to quickly hunt for the fastest way to pause the video, mute the sound, or close the page entirely, especially if you were in a public place at the time.

Read more
Impressed by WhatsApp Tech? Build WhatsApp Clone with Media Upload

With more than one billion people using WhatsApp, the platform is becoming a go-to for reliable and secure instant messaging. Having so many users means that data transfer processes must be optimized and scalable across all platforms. WhatsApp is touted for its ability to achieve significant media quality preservation when traversing the network from sender to receiver, and this is no easy feat to achieve.

Read more
New Google-powered add-on for auto video categories and tags

Due to significant growth of the web and improvements in network bandwidth, video is now a major source of information and entertainment shared over the internet. As a developer or asset manager, making corporate videos available for viewing, not to mention user-uploaded videos, means you also need a way to categorize them according to their content and make your video library searchable. Most systems end up organizing their video by metadata like the filename, or with user-generated tags (e.g., youtube). This sort of indexing method is subjective, inconsistent, time-consuming, incomplete and superficial.

Read more

iOS Developer Camp: The Dog House

By Shantini Vyas
iOS Developer Camp: The Dog House

Confession: I’m kind of addicted to hackathons. Ever since graduating from Coding Dojo earlier this year, I’ve been on the hunt for new places to expand my skills and meet new people in the tech space. iOS Developer Camp’s 10th Anniversary event bowled me over. Initially, because of its length. 48 hours? Yeesh. I had no idea that those 48 hours would change my life. But let’s first get a little backstory on my favorite topic: dogs.

Read more